Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2019: 6764756, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379989

RESUMO

Hyperactivation of microglia, the resident innate immune cells of the central nervous system, exacerbates various neurodegenerative disorders, including Parkinson's disease (PD). Parkinson's disease is generally characterized by a severe loss of dopaminergic neurons in the nigrostriatal pathway, with substantial neuroinflammation and motor deficits. This was experimentally replicated in animal models, using neurotoxins, i.e., LPS (lipopolysaccharides) and MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). Salicornia europaea L. (SE) has been used as a dietary supplement in Korea and Europe for several years, due to its nutritional and therapeutic value. In this study, we intend to investigate the antineuroinflammatory and anti-PD-like effects of the bioactive fraction/candidate of the SE extract. Initially, we screened various fractions of SE extract using an in vitro antioxidant assay. The optimal fraction was investigated for its in vitro antineuroinflammatory potential in LPS-stimulated BV-2 microglial cells and in vivo anti-PD-like potential in MPTP-intoxicated mice. Subsequently, to identify the potential candidate responsible for the elite therapeutic potential of the optimal fraction, we conducted antioxidant activity-guided isolation and purification; the bioactive candidate was structurally characterized using nuclear magnetic resonance spectroscopy and chromatographic techniques and further investigated for its in vitro antioxidative and antineuroinflammatory potential. The results of our study indicate that SE-EA and its bioactive candidate, Irilin B, effectively alleviate the deleterious effect of microglia-mediated neuroinflammation and promote antioxidative effects. Thus, they exhibit potential as therapeutic candidates against neuroinflammatory and oxidative stress-mediated PD-like neurodegenerative complications.


Assuntos
Chenopodiaceae/química , Isoflavonas/farmacologia , Intoxicação por MPTP/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/química , Acetatos/química , Animais , Antioxidantes/metabolismo , Chenopodiaceae/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Isoflavonas/uso terapêutico , Lipopolissacarídeos/farmacologia , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Oxid Med Cell Longev ; 2018: 3175214, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849878

RESUMO

Parkinson's disease (PD) is a commonly reported age-related neurodegenerative disorder. Microglial-mediated neuroinflammation is one of the cardinal hallmarks of various neurodegenerative disorders, including PD progression. Inadequate therapeutic strategies and substantial adverse effects of well-established drug candidates demand new therapeutic leads to treat PD. Dendropanax morbifera (DM) is an endemic plant species of South Korea, and it has been used extensively as traditional medicine to treat numerous clinical complications. In this study, we conducted an initial profiling of the few major phytoconstituents of aqueous DM leaf extracts (DML) and quantified the same using high-performance liquid chromatography tandem mass spectrometry with electrospray ionization (HPLC-ESI-MS/MS). We subsequently evaluated the antineuroinflammatory activity and ameliorative potential of DML in both in vitro and in vivo experimental PD models. The prophylactic treatment of DML effectually improved the behavioral deficits, curbed the microglial-mediated neuroinflammation, and protected dopaminergic (DA) neuronal loss by restoring tyrosine hydroxylase (TH) levels in brain tissue of the MPTP-induced PD mouse model. We conducted chromatographic profiling and identified chlorogenic acid (CA) as a major constituent (19.5 mg/g of BuOH fraction), which has been well documented as an antioxidant and anti-inflammatory agent. This was found to be in harmony with our in vitro results, where DML suppressed the level of inflammatory mediators and allied the signaling pathway in LPS-stimulated microglial cells. The results of our study indicate that DML and its bioactive constituents can be developed as potential therapeutic candidates against progressive PD complications.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais/química , Folhas de Planta/química , Animais , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Doenças Neurodegenerativas/patologia
3.
Oxid Med Cell Longev ; 2018: 1209801, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743967

RESUMO

Thymoquinone (TQ) is an active ingredient isolated from Nigella sativa and has various pharmacological activities, such as protection against oxidative stress, inflammation, and infections. In addition, it might be a potential neuropharmacological agent because it exhibits versatile potential for attenuating neurological impairments. It features greater beneficial effects in toxin-induced neuroinflammation and neurotoxicity. In various models of neurological disorders, it demonstrates emergent functions, including safeguarding various neurodegenerative diseases and other neurological diseases, such as stroke, schizophrenia, and epilepsy. TQ also has potential effects in trauma mediating and chemical-, radiation-, and drug-induced central nervous system injuries. Considering the pharmacokinetic limitations, research has concentrated on different TQ novel formulations and delivery systems. Here, we visualize the neuropharmacological potential, challenges, and delivery prospects of TQ, specifically focusing on neurological disorders along with its chemistry, pharmacokinetics, and toxicity.


Assuntos
Anti-Infecciosos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Benzoquinonas/uso terapêutico , Doenças do Sistema Nervoso/tratamento farmacológico , Sistema Nervoso/efeitos dos fármacos , Neurofarmacologia , Animais , Sistemas de Liberação de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Nigella sativa/metabolismo
4.
Sci Rep ; 8(1): 7174, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740000

RESUMO

The Salicornia europaea L. (SE) plant is a halophyte that has been widely consumed as a seasoned vegetable, and it has been recently reported to counteract chronic diseases related to oxidative and inflammatory stress. In this study, we performed an initial phytochemical analysis with in vitro biochemical tests and chromatographic profiling of desalted and enzyme-digested SE ethanol extract (SE-EE). Subsequently, we evaluated the anti-neuroinflammatory and ameliorative potential of SE-EE in LPS-inflicted BV-2 microglial cells and scopolamine-induced amnesic C57/BL6N mice, respectively. SE-EE possess considerable polyphenols and flavonoids that are supposedly responsible to improve its bio-efficacy. SE-EE dose-dependently attenuated LPS-induced inflammation in BV-2 cells, significantly repressed behavioural/cognitive impairment, dose-dependently regulated the cholinergic function, suppressed oxidative stress markers, regulated inflammatory cytokines/associated proteins expression and effectively ameliorated p-CREB/BDNF levels, neurogenesis (DCX stain), neuron proliferation (Ki67 stain) in scopolamine-administered mice. Thus, SE-EE extract shows promising multifactorial disease modifying activities and can be further developed as an effective functional food, drug candidate, or supplemental therapy to treat neuroinflammatory mediated disorders.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amnésia/tratamento farmacológico , Antioxidantes/administração & dosagem , Chenopodiaceae/química , Inflamação/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amnésia/induzido quimicamente , Amnésia/genética , Amnésia/patologia , Animais , Antioxidantes/química , Fator Neurotrófico Derivado do Encéfalo/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Modelos Animais de Doenças , Proteína Duplacortina , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Escopolamina/toxicidade
5.
Int J Nanomedicine ; 11: 3417-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27555765

RESUMO

This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as "flavonosome". Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA-phosphatidylcholine) through four different methods of synthesis - bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug-carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA-phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of -39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a promising nanodrug delivery system for loading multiflavonoids in a single entity with sustained activity as an antioxidant, hepatoprotective, and hepatosupplement candidate.


Assuntos
Química Farmacêutica/métodos , Flavonoides/farmacologia , Lipossomos/química , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Portadores de Fármacos , Sequestradores de Radicais Livres/química , Humanos , Cinética , Moringa/química , Picratos/química , Extratos Vegetais/farmacologia , Folhas de Planta/química
6.
Mediators Inflamm ; 2015: 720171, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26609199

RESUMO

Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1ß, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 µg/mL and 200 µg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway.


Assuntos
Mediadores da Inflamação/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Moringa oleifera , NF-kappa B/fisiologia , Extratos Vegetais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/biossíntese , Dinoprostona/biossíntese , Flores/química , Mediadores da Inflamação/fisiologia , Macrófagos/fisiologia , Moringa oleifera/química , NF-kappa B/análise , Óxido Nítrico/biossíntese , Extratos Vegetais/análise
7.
Biomed Res Int ; 2015: 970398, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793214

RESUMO

The influence of Moringa oleifera (MO) leaf extract as a dietary supplement on the growth performance and antioxidant parameters was evaluated on broiler meat and the compounds responsible for the corresponding antioxidant activity were identified. 0.5%, 1.0%, and 1.5% w/v of MO leaf aqueous extracts (MOLE) were prepared, and nutritional feed supplemented with 0%, 0.5%, 1.0%, and 1.5% w/w of MO leaf meal (MOLM) extracts were also prepared and analysed for their in vitro antioxidant potential. Furthermore, the treated broiler groups (control (T1) and treatment (T2, T3, and T4)) were evaluated for performance, meat quality, and antioxidant status. The results of this study revealed that, among the broilers fed MOLM, the broilers fed 0.5% w/w MOLM (T2) exhibited enhanced meat quality and antioxidant status (P < 0.05). However, the antioxidant activity of the MOLE is greater than that of the MOLM. The LC-MS/MS analysis of MOLM showed high expression of isoflavones and fatty acids from soy and corn source, which antagonistically inhibit the expression of the flavonoids/phenols in the MO leaves thereby masking its antioxidant effects. Thus, altering the soy and corn gradients in conventional nutrition feed with 0.5% w/w MO leaves supplement would provide an efficient and cost-effective feed supplement.


Assuntos
Antioxidantes/farmacologia , Galinhas/crescimento & desenvolvimento , Moringa oleifera/química , Extratos Vegetais/farmacologia , Ração Animal , Animais , Antioxidantes/química , Suplementos Nutricionais , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Isoflavonas/química , Isoflavonas/farmacologia , Carne , Estado Nutricional/fisiologia , Extratos Vegetais/química , Folhas de Planta/química
8.
EXCLI J ; 14: 385-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27004048

RESUMO

Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 µg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients.

9.
J Food Sci ; 78(9): C1368-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24024688

RESUMO

Free radicals trigger chain reaction and inflict damage to the cells and its components, which in turn ultimately interrupts their biological activities. To prevent free radical damage, together with an endogenous antioxidant system, an exogenous supply of antioxidant components to the body in the form of functional food or nutritional diet helps undeniably. Research conducted by the Natl. Inst. of Health claimed that Moringa oleifera Lam possess the highest antioxidant content among various natural food sources based on an oxygen radical absorbent capacity assay. In this study, a 90% (ethanol:distilled water--90:10) gradient solvent was identified as one of the best gradient solvents for the effectual extraction of bioactive components from M. oleifera leaves. This finding was confirmed by various antioxidant assays, including radical scavenging activity (that is, 1, 1-diphenyl-2-picrylhydrazyl, H(2)O(2), and NO radical scavenging assay) and total antioxidant capacity (that is, ferric reducing antioxidant power and molybdenum assay). High-performance liquid chromatography (HPLC) fingerprints of the 90% gradient extract visually showed few specific peaks, which on further analysis, using HPLC-DAD-ESI-MS, were identified as flavonoids and their derivatives. Despite commonly reported flavonoids, that is, kaempferol and quercetin, we report here for the 1st time the presence of multiflorin-B and apigenin in M. oleifera leaves. These findings might help researchers to further scrutinize this high activity exhibiting gradient extract and its bio-active candidates for fruitful clinical/translational investigations.


Assuntos
Antioxidantes/análise , Moringa oleifera/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/análise , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão , Etanol/química , Flavonoides/análise , Manipulação de Alimentos/métodos , Peróxido de Hidrogênio/química , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA