Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(5)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818755

RESUMO

Origanum ehrenbergii Boiss., an endemic plant to Lebanon, is widely acknowledged in Lebanese traditional medicine. The aim of the present study was to evaluate the influence of the drying method, region, and time of harvest on yield and chemical composition of O. ehrenbergii essential oils (EOs). Plants were harvested monthly throughout 2013 and 2014, from two different regions, Aabadiye and Qartaba, then dried using two drying methods: lyophilization and shade-drying at 4 °C. EO was extracted by hydrodistillation and analyzed by GC/MS. GC-MS data, combined with independent component analysis (ICA) and common component and specific weight analysis (CCSWA), showed that drying techniques, region of harvest, and soil composition have no effect on the chemical composition of O. ehrenbergii EOs. Of the factors analyzed, only harvesting time affected the EO composition of this species. High and stable amounts of carvacrol, associated with reliable antimicrobial activities, were detected in material harvested between March and October. EOs obtained from plants harvested in Aabadiye in January and February showed high amounts of thymoquinone, related to anti-inflammatory and cytotoxic effects. The use of ICA and CCSWA was proven to be efficient, and allowed the development of a discriminant model for the classification of O. ehrenbergii chemotype and the determination of the best harvesting time.


Assuntos
Óleos Voláteis/análise , Óleos Voláteis/química , Origanum/química , Altitude , Dessecação , Análise Discriminante , Geografia , Líbano , Análise de Componente Principal , Solo , Fatores de Tempo
2.
Anal Chim Acta ; 839: 14-25, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25066714

RESUMO

Olive oil is one of the most valued sources of fats in the Mediterranean diet. Its storage was generally done using glass or metallic packaging materials. Nowadays, plastic packaging has gained worldwide spread for the storage of olive oil. However, plastics are not inert and interaction phenomena may occur between packaging materials and olive oil. In this study, extra virgin olive oil samples were submitted to accelerated interaction conditions, in contact with polypropylene (PP) and polylactide (PLA) plastic packaging materials. 3D-front-face fluorescence spectroscopy, being a simple, fast and non destructive analytical technique, was used to study this interaction. Independent components analysis (ICA) was used to analyze raw 3D-front-face fluorescence spectra of olive oil. ICA was able to highlight a probable effect of a migration of substances with antioxidant activity. The signals extracted by ICA corresponded to natural olive oil fluorophores (tocopherols and polyphenols) as well as newly formed ones which were tentatively identified as fluorescent oxidation products. Based on the extracted fluorescent signals, olive oil in contact with plastics had slower aging rates in comparison with reference oils. Peroxide and free acidity values validated the results obtained by ICA, related to olive oil oxidation rates. Sorbed olive oil in plastic was also quantified given that this sorption could induce a swelling of the polymer thus promoting migration.


Assuntos
Embalagem de Alimentos , Óleos de Plantas , Plásticos , Espectrometria de Fluorescência/métodos , Azeite de Oliva
3.
J Agric Food Chem ; 61(44): 10565-73, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24111743

RESUMO

Polyethylene terephthalate (PET) could be considered for the packaging of vegetable oils taking into account the impact of its oxygen permeability on the oxidation of the oil and the migration of volatile organic compounds (VOC) from the polymer matrix. After accelerated aging tests at 40 °C for 10, 20, and 30 days, the headspace of three sunflower oils packed in PET with high density polyethylene caps was carried out using solid phase microextraction. VOCs such as benzene hydrocarbons, ethylbenzene, xylene isomers and diethyl phthalate were identified in vegetable oils by gas chromatography coupled to mass spectrometry. Chemometric tools such as principal components analysis (PCA), independent components analysis (ICA), and a multiblocks analysis, common components and specific weight analysis (CCSWA) applied to analytical data were revealed to be very efficient to discriminate between samples according to oil oxidation products (hexanal, heptanal, 2-pentenal) and to the migration of packaging contaminants (xylene).


Assuntos
Embalagem de Alimentos/instrumentação , Óleos de Plantas/química , Polietilenotereftalatos/efeitos adversos , Contaminação de Alimentos/análise , Temperatura Alta , Oxirredução , Polietilenotereftalatos/análise , Óleo de Girassol , Compostos Orgânicos Voláteis/análise
4.
Talanta ; 115: 928-37, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24054684

RESUMO

In an effort to identify non-intentionally added substances (NIAS), which is still a challenging task for analytical chemists, PET pellets, preforms and bottles were analyzed by an optimized headspace solid phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS). Fingerprints obtained by the proposed method were analyzed by three chemometric tools: Principal Components Analysis (PCA), Independent Components Analysis (ICA) and a multi-block method (Common Components and Specific Weights Analysis CCSWA) in order to extract pertinent variations in NIAS concentrations. Total ion current (TIC) chromatograms were used for PCA and ICA while extracted ion chromatograms (EIC) were used for CCSWA, each ion corresponding to a block. PCA managed to discriminate pellets and preforms from bottles due to several NIAS. Volatiles like 2-methyl-1,3-dioxolane, ethylene glycol, ethylbenzene and xylene were responsible for the discrimination of pellets and preforms. Less volatile compounds like linear aldehydes and phthalates were responsible for the discrimination of bottles. ICA showed more specific discriminations especially for bottles and pellets while CCSWA managed to discriminate preforms. The proposed methodology, combining HS-SPME/GC-MS with chemometric tools proved its efficiency in highlighting NIAS in PET samples in a relatively simple and fast approach compared to classical techniques.


Assuntos
Embalagem de Alimentos , Polietilenotereftalatos/análise , Análise de Componente Principal , Compostos Orgânicos Voláteis/análise , Bebidas , Análise Fatorial , Contaminação de Alimentos/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Óleos de Plantas , Microextração em Fase Sólida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA