Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 6407, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742039

RESUMO

Heat stress is detrimental to food-producing animals and animal productivity remains suboptimal despite the use of heat abatement strategies during summer. Global warming and the increase of frequency and intensity of heatwaves are likely to continue and, thus, exacerbate the problem of heat stress. Heat stress leads to the impairment of physiological and cellular functions of ectothermic and endothermic animals. Therefore, it is critical to conceive ways of protecting animals against the pathological effects of heat stress. In experiments with endothermic animals highly sensitive to heat (Bos taurus), we have previously reported that heat-induced systemic inflammation can be ameliorated in part by nutritional interventions. The experiments conducted in this report described molecular and physiological adaptations to heat stress using Drosophila melanogaster and dairy cow models. In this report, we expand previous work by first demonstrating that the addition of a postbiotic from Aspergillus oryzae (AO) into the culture medium of ectothermic animals (Drosophila melanogaster) improved survival to heat stress from 30 to 58%. This response was associated with downregulation of genes involved in the modulation of oxidative stress and immunity, most notably metallothionein B, C, and D. In line with these results, we subsequently showed that the supplementation with the AO postbiotic to lactating dairy cows experiencing heat stress decreased plasma concentrations of serum amyloid A and lipopolysaccharide-binding protein, and the expression of interleukin-6 in white blood cells. These alterations were paralleled by increased synthesis of energy-corrected milk and milk components, suggesting enhanced nutrient partitioning to lactogenesis and increased metabolic efficiency. In summary, this work provides evidence that a postbiotic from AO enhances thermal tolerance likely through a mechanism that entails reduced inflammation.


Assuntos
Aspergillus oryzae/metabolismo , Produtos Biológicos/administração & dosagem , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Polissacarídeos Fúngicos/administração & dosagem , Transtornos de Estresse por Calor/dietoterapia , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico/efeitos dos fármacos , Termotolerância/efeitos dos fármacos , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Feminino , Expressão Gênica/efeitos dos fármacos , Temperatura Alta , Inflamação/dietoterapia , Inflamação/veterinária , Lactação/efeitos dos fármacos , Leite/química , Leite/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética
2.
J Dairy Sci ; 101(1): 386-395, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29128223

RESUMO

The objective of this study was to evaluate the effects of reducing dietary rumen-degradable protein (RDP) and rumen-undegradable protein (RUP) on protein and energy metabolism in heat-stressed dairy cows. Eighteen primiparous and 30 multiparous mid-lactation Holstein cows were used in a completely randomized design arranged in a 2 × 2 factorial (n = 12/treatment). Cows were randomly assigned to 1 of 4 dietary treatments that included 2 levels of RDP (10 and 8%; D) and 2 levels of RUP (8 and 6%; U) of dry matter for 21 d as (1) 10D:8U, (2) 8D:8U, (3) 10D:6U, and (4) 8D:6U. Diets were isoenergetic and contained 50% forage and 50% concentrate (dry matter basis). Cows were housed in a freestall barn. Three weeks before start of treatments, all animals were fed the 10D:8U diet and received supplemental cooling to prevent heat stress. During the treatment period, cows experienced a daily increment in temperature-humidity index from 74 to 82 for 1000 to 2000 h. Blood samples were collected on d -1 and 21 of the treatment period to determine plasma concentrations of AA, glucose, insulin, fatty acids, and ß-hydroxybutyrate. For primiparous cows, reducing from 10 to 8% RDP decreased insulin concentrations. For multiparous cows, we found significant RDP by RUP interactions for insulin, ß-hydroxybutyrate, fatty acids, total essential AA, and 3-methylhistidine concentrations. Reducing from 10 to 8% RDP decreased insulin concentrations at 6% RUP, but concentrations did not change when reducing RDP at 8% RUP. Reducing from 10 to 8% RDP decreased ß-hydroxybutyrate concentrations at 8% RUP, but concentrations did not change when reducing RDP at 6% RUP. Reducing from 10 to 8% RDP increased nonesterified fatty acid and total essential AA concentrations at 8% RUP, but concentrations did not change when reducing RDP at 6% RUP. Reducing from 8 to 6% RUP decreased 3-methylhistidine concentration at 8% RDP, but not at 10% RDP. Reducing from 8 to 6% RUP increased milk protein yield efficiency in primiparous and multiparous cows. These results indicate that reducing RDP and RUP lowers circulating insulin, which was associated with mobilization and utilization of fatty acids. Reduced RDP and RUP increases the use of AA to maintain milk protein synthesis and limit AA catabolism in cows exposed to warm climates.


Assuntos
Aminoácidos/metabolismo , Bovinos/fisiologia , Proteínas Alimentares/metabolismo , Metabolismo Energético , Proteínas do Leite/análise , Leite/química , Animais , Dieta/veterinária , Ácidos Graxos/análise , Ácidos Graxos não Esterificados/sangue , Feminino , Temperatura Alta , Lactação , Leite/metabolismo , Distribuição Aleatória , Rúmen/metabolismo
3.
West J Med ; 157(4): 425-9, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1462536

RESUMO

Occupational and environmental diseases are underrecognized. Among the barriers to the successful diagnosis, treatment, and prevention of these conditions are inadequate consultative and information resources. We describe the 10-year clinical and training experiences of an academically affiliated referral center that has as its primary goal the identification of work-related and other environmental diseases. The University of Washington Occupational and Environmental Medicine Program has evaluated 6,048 patients in its diagnostic and screening clinics. Among the 2,841 seen in the diagnostic clinics, 1,553 (55%) had a work-related condition. The most prevalent diagnoses included asbestos-related lung disease (n = 603), toxic encephalopathy (n = 160), asthma (n = 119), other specific respiratory conditions (n = 197), carpal tunnel syndrome (n = 86), and dermatitis (n = 82). The clinics serve as a training site for fellows in the specialty training program, primary care internal medicine residents, residents from other medical specialties, and students in industrial hygiene, toxicology, and occupational health nursing. The program serves two additional important functions: providing consultative services to community physicians and training specialists and other physicians in this underserved area of medicine.


Assuntos
Hospitais Especializados , Doenças Profissionais , Medicina do Trabalho/educação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Profissionais/diagnóstico , Doenças Profissionais/epidemiologia , Desenvolvimento de Programas , Fatores de Tempo , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA