Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
AMB Express ; 13(1): 105, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783874

RESUMO

Dengue is one of the fairly prevalent viral infections at the world level transmitted through mosquitoes (Aedes aegypti and Aedes albopictus). Due to various environmental factors, dengue cases surged rapidly at the global level in recent decades, with 193245 cases in 2021 and an increment of 110473 cases in 2022. There is no antidote available against dengue and other flaviviruses. In the absence of a dengue vaccine or specific antiviral, medicinal plants or their products can be the only choice for its effective management. Ocimum sanctum is known as ''The Incomparable One,'' ''Mother Medicine of Nature'' and ''Queen of Herbs'' in Ayurveda, and is considered an "elixir of life" supreme in both healthcare and spiritual terms. In present study eugenol was isolated in O.sanctum. Eugenol (1-hydroxy-2-methoxy-4-allylbenzene) has been substantially responsible for its therapeutic potential. High-performance thin-layer chromatography, Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy were applied to identify the compound. The Rf value of isolated compound was same in the chromatogram (0.69 + 0.05) with compare to standard. The safe dose of plant and eugenol were found as < 31.25 µg/ml and < 15.62 µg/ml. The anti-dengue activity was assessed in C6/36 cell lines, their effect was determined through Quantitative PCR. The NMR of the isolated eugenol showed similar properties as the commercial marker compound. The eugenol and SFE extract of O. sanctum showed the inhibition of 99.28% and completely against Dengue-2, respectively. Docking study exposed that the interaction of eugenol with NS1 and NS5 dengue protein showed the binding energy as - 5.33 and - 5.75 kcal/mol, respectively. The eugenol from the O. sanctum plant has the potential to be a good source of future treatment medications for dengue illness, as well as a valuable tool in its successful management.

2.
Indian J Pharmacol ; 53(5): 403-411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34854411

RESUMO

Viral infections are posing a great threat to humanity for the last few years. Among these, Chikungunya which is a mosquito-borne viral infection has produced enormous epidemics around the world after been rebounded. Although this infection shows a low mortality rate, patients suffer from fever, arthralgia, and maculopapular rashes, which reduce the quality of life for several weeks to years. The currently available treatments only provide symptomatic relief based on analgesics, antipyretics, and anti-inflammatory drugs which are nonspecific without satisfactory results. Medicinal plants are a widely accepted source of new molecules for the treatment of infectious diseases including viral infections. The scientific reports, primarily focusing on the anti-chikungunya activity of plant extracts, natural origin pure compounds, and their synthetic analog published from 2011 to 2021, were selected from PubMed, Google Scholar, and Scopus by using related keywords like anti-chikungunya plants, natural antivirals for Chikungunya. The present review decodes scientific reports on medicinal plants against chikungunya virus (CHIKV) infection and demystifies the potential phytoconstituents which reveals that the screening of flavonoids containing plants and phytochemicals showing efficacy against other arbovirus infections, may prove as a potential lead for drug development against CHIKV. The present article also outlines pathogenesis, clinical aspects, molecular virology, and diagnostic approaches of CHIKV infection.


Assuntos
Antivirais/farmacologia , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antivirais/uso terapêutico , Humanos , Fitoterapia , Extratos Vegetais/uso terapêutico , Plantas Medicinais
3.
BMC Complement Med Ther ; 21(1): 227, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496833

RESUMO

BACKGROUNDS: Leucas cephalotes is a common ethnomedicinal plant widely used by traditional healers for the treatment of Malaria and other types of fever. Oleanolic acid and its derivatives have been reported for various types of pharmacological activities, such as anti-inflammatory, antioxidant, anticancer, hepatoprotective, anti-HIV and anti-HCV activity. METHODS: L.cephalotes plant extracts were prepared by supercritical fluid extraction (SFE) method and oleanolic acid was isolated by preparatory thin-layer chromatography. The compound was identified and characterize by using ultraviolet-visible spectroscopy (UV-VIS), Fourier transform infra-Red spectroscopy (FT-IR) and high-performance thin-layer chromatography (HPTLC). The structure of the compound was elucidated by proton nuclear magnetic resonance (1HNMR) and carbon nuclear magnetic resonance (1CNMR) and the purity checked by differential scanning calorimetry (DSC). The MTT assay was used to determine the toxicity of plant extract and oleanolic acid using a microplate reader at 595 nm. The anti-dengue activity of plant extract and oleanolic acid was tested in vitro and in silico using real-time RT-PCR. RESULTS: The optimum yield of the extract was obtained at 40 °C temperature and 15Mpa pressure. The maximum non-toxic dose (MNTD) of plant extract and oleanolic acid were found as 46.87 µg/ml and 93.75 µg/ml, respectively in C6/36 cell lines. UV spectrophotometer curve of the isolated compound was overlapped with standard oleanolic acid at 232 nm. Superimposed FT-IR structure of the isolated compound was indicated the same spectra at 3433, 2939, 2871, 1690, 1500,1463, 1387, 1250, 1209, 1137 and 656 position as per marker compound. HPTLC analysis showed the retention factor of L. cephalotes extract was 0.19 + 0.06 as similar to the standard oleanolic acid chromatogram. The NMR structure of the isolated compound was identified as similar to the marker oleanolic acid structure. DSC analysis revealed the purity of isolated oleanolic acid was 98.27% with a melting point of 311.16 °C. Real-time RT PCR results revealed that L. cephalotes supercritical extract and isolated oleanolic acid showed 100 and 99.17% inhibition against the dengue - 2 virus when treated with MNTD value of plant extract (46.87 µg/ml) and the test compound (93.75 µg/ml), respectively. The molecular study demonstrated the binding energy of oleanolic acid with NS1and NS5 (non-structural protein) were - 9.42 & -8.32Kcal/mol, respectively. CONCLUSIONS: The SFE extract L. cephalotes and its active compound, oleanolic acid inhibiting the activity of dengue-2 serotype in the in vitro and in silico assays. Thus, the L.cephalotes plant could be an excellent source for drug design for the treatment of dengue infection.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Simulação por Computador , Vírus da Dengue/efeitos dos fármacos , Humanos , Técnicas In Vitro , Lamiaceae/química , Plantas Medicinais/química
4.
J Ethnopharmacol ; 267: 113541, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152438

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: About 2.5 billion peoples are at risk of dengue virus and the majority of people, use traditional plant-based medicines to combat dengue. The whole plant of Andrographis paniculata used traditionally over past decades for health promotion. Andrographolide isolated from Andrographis paniculata is used as natural remedy for the treatment of various diseases in different parts of the world. Andrographolide has been reported to have antiviral activity against hepatitis B virus, hepatitis C virus, herpes simplex virus, influenza virus, chikungunya virus, dengue virus 2 and 4. AIM OF THE STUDY: The aim of the present study to isolate the andrographolide from the A. paniculata by supercritical fluid extraction technique and to characterize the isolated compound along with it anti-dengue activity against DENV-2 in vitro and in silico methods. MATERIALS AND METHODS: Supercritical extraction condition for A. paniculata was standardised to isolate andrographolide compound at definite temperature and pressure on the basis of previous study. The andrographolide was identified by using Ultraviolet-Visible Spectroscopy (UV-VIS), Fourier-Transform Infrared Spectroscopy (FT-IR) and High Performance Thin Layer Chromatography (HPTLC) and Proton Nuclear Magnetic Resonance (1HNMR). The maximum non-toxic dose of isolated andrographolide was detected by MTT assay using a micro plate reader at 595 nm. One hundred (100) copies/ml of the DENV-2 virus was used for antiviral assay in C6/36 cells lines and inhibition of virus due to andrographolide was determined by real-time PCR assay. The purity of isolated andrographolide was determined by Differential Scanning Calorimetry (DSC). The dengue NS5 receptor protein was docked with andrographolide and evaluated on the basis of the total energy and binding affinity score by Auto Dock (V4.2.6) software. RESULTS: Andrographolide, a diterpene lactone was isolated from the A. paniculata supercritical extract at 40 °C temperature and 15 Mpa pressure. UV spectrophotometer analysis revealed that the curve of andrographolide plant extract was overlapped with reference compound at 228 nm and the similar bands were detected from FT-IR spectroscopy analysis at 3315, 2917, 2849, 1673, 1462 and 1454 cm-1 in isolated and standard andrographolide. HPTLC analysis shows the retention factor (Rf) of A. paniculata extract at 0.74 ± 0.06 as similar to standard andrographolide Rf values. The purity of isolated andrographolide was 99.76%. The maximum non-toxic dose of isolated andrographolide was found as 15.62 µg/ml on the C6/36 cell line calculated by using MTT assay. The andrographolide showed the 97.23% anti-dengue activity against the dengue-2 virus in C6/36 cell lines. Results of molecular docking showed that the interaction between andrographolide and NS5 of dengue protein with the maximum binding energy as -7.35 kcal/mol. CONCLUSIONS: It is concluded that isolated andrographolide from the A. paniculata possess anti-dengue activity against dengue-2 virus as revealed from in vitro and in silico method. Due to lack of the vaccine and anti-viral agents, andrographolide extracted from A. paniculata play a major role to inhibit the dengue replication. Hence, it could be a source for drug design and help to reduce the dengue infection.


Assuntos
Andrographis , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/prevenção & controle , Diterpenos/farmacologia , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Aedes , Andrographis/química , Animais , Antivirais/química , Antivirais/isolamento & purificação , Linhagem Celular , Dengue/virologia , Vírus da Dengue/enzimologia , Vírus da Dengue/crescimento & desenvolvimento , Diterpenos/química , Diterpenos/isolamento & purificação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
5.
Virusdisease ; 31(3): 270-276, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32420412

RESUMO

Chikungunya is one of the highly infectious viral disease without vaccine and anti-viral. Aim of present study is to check the anti-chikungunya activities of Zingiber officinale (Ginger) in the animal cell culture model. The medicinal plant extract was prepared from Z. officinale rhizome. Median tissue culture infective dose (TCID50) of Chikungunya virus (CHIKV) and Maximum non-toxic dose (MNTD) of Z. officinale extract was determined in Vero cell-line on the basis of cell viability followed by MTT assay. In vitro anti-chikungunya activity was performed in Vero cell-line with MNTD and half of MNTD of Z. officinale medicinal plant extract. The anti-viral effect of Z. officinale was studied by observing the cytopathic effects and cell viability measured by MTT assay. Maximum non-toxic dose of Z. officinale plant extract was found 62.5 µg/ml. During anti-chikungunya experimentation, cell viability increased to 51.05% and 35.10%, when Vero cells were pre-treated with MNTD and half of MNTD of Z. officinale extract respectively. Similarly, in co-treatment, when MNTD, half of MNTD of Z. officinale and Median tissue culture infective dose CHIKV were inoculated simultaneously, then the viability of Vero cell-line was increases by 52.90% and 49.02% respectively. The rhizome extracts of Z. officinale have high potential to treat CHIKV. Medicinal plants and their metabolites are most important sources of antimicrobial and can be utilized for the development of new drugs. In view of the rapid expansion of CHIKV at the global level, there is an urgent need to develop newer anti-chikungunya drugs.

6.
Appl Microbiol Biotechnol ; 103(2): 881-891, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30413849

RESUMO

The exploration of nanoscale materials for their therapeutic potential against emerging and re-emerging infections has been increased in recent years. Silver nanoparticles (AgNPs) are known to possess antimicrobial activities against different pathogens including viruses and provide an excellent opportunity to develop new antivirals. The present study focused on biological synthesis of AgNPs from Andrographis paniculata, Phyllanthus niruri, and Tinospora cordifolia and evaluation of their antiviral properties against chikungunya virus. Synthesized plants AgNPs were characterized to assess their formation, morphology, and stability. The cytotoxicity assays in Vero cells revealed that A. paniculata AgNPs were most cytotoxic with maximum non-toxic dose (MNTD) value of 31.25 µg/mL followed by P. niruri (MNTD, 125 µg/mL) and T. cordifolia AgNPs (MNTD, 250 µg/mL). In vitro antiviral assay of AgNPs based on degree of inhibition of cytopathic effect (CPE) showed that A. paniculata AgNPs were most effective, followed by T. cordifolia and P. niruri AgNPs. The results of antiviral assay were confirmed by cell viability test using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) dye, which revealed that A. paniculata AgNPs inhibited the virus to a maximum extent. The cell viability of CHIKV-infected cells significantly increased from 25.69% to 80.76 and 66.8%, when treated with A. paniculata AgNPs at MNTD and ½MNTD, respectively. These results indicated that use of plants AgNPs as antiviral agents is feasible and could provide alternative treatment options against viral diseases which have no specific antiviral or vaccines available yet.


Assuntos
Antivirais/metabolismo , Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Química Verde/métodos , Nanopartículas Metálicas , Plantas Medicinais/metabolismo , Prata/metabolismo , Andrographis/metabolismo , Animais , Chlorocebus aethiops , Testes de Sensibilidade Microbiana , Phyllanthus/metabolismo , Prata/farmacologia , Tinospora/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA