Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Rep ; 13(1): 9264, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286720

RESUMO

The objective of this study was to clarify the impact of adverse reactions on immune dynamics. We investigated the pattern of systemic adverse reactions after the second and third coronavirus disease 2019 (COVID-19) vaccinations and their relationship with immunoglobulin G against severe acute respiratory syndrome coronavirus 2 spike 1 protein titers, neutralizing antibody levels, peak cellular responses, and the rate of decrease after the third vaccination in a large-scale community-based cohort in Japan. Participants who received a third vaccination with BNT162b2 (Pfizer/BioNTech) or mRNA-1273 (Moderna), had two blood samples, had not had COVID-19, and had information on adverse reactions after the second and third vaccinations (n = 2198) were enrolled. We collected data on sex, age, adverse reactions, comorbidities, and daily medicine using a questionnaire survey. Participants with many systemic adverse reactions after the second and third vaccinations had significantly higher humoral and cellular immunity in the peak phase. Participants with multiple systemic adverse reactions after the third vaccination had small changes in the geometric values of humoral immunity and had the largest geometric mean of cellar immunity in the decay phase. Systemic adverse reactions after the third vaccination helped achieve high peak values and maintain humoral and cellular immunity. This information may help promote uptake of a third vaccination, even among those who hesitate due to adverse reactions.


Assuntos
Vacina BNT162 , COVID-19 , Humanos , Anticorpos Antivirais , Vacina BNT162/efeitos adversos , Terapias Complementares , COVID-19/prevenção & controle , Imunidade Celular , Imunidade Humoral , Vacinação/efeitos adversos
2.
Pediatr Transplant ; 27(2): e14440, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36471536

RESUMO

BACKGROUND: The role of fibroblast growth factor 23 (FGF23) levels in mineral metabolism before and after kidney transplantation in pediatric patients is poorly understood. METHODS: We prospectively evaluated 24 patients under 18 years of age (4.5 [3.3-9.8] years) who underwent living kidney transplantation between July 2016 and March 2018, and measured intact FGF23 and serum αKlotho levels, and other parameters of mineral metabolism before and after transplantation (Day 7, 1 and 4 months, and 1 year). Relationships between parameters were examined by linear analysis. RESULTS: FGF23 level was 440.8 [63.4-5916.3] pg/ml pre-transplant and decreased significantly to 37.1 [16.0-71.5] pg/ml at Day 7 post-transplant (-91.6%, p < .001). Thereafter, it remained at normal levels until 1 year. αKlotho level was 785 [568-1292] pg/ml pre-transplant and remained low at Day 7 and 1 month post-transplant, with an increasing trend at 4 months. Post-transplant phosphorus levels were significantly decreased compared with pre-transplant, with a lowest level of 1.7 [1.3-2.9] mg/dl, -5.7 [-6.8, -3.8] SD at Day 4, followed by gradual recovery. Phosphorus levels and the ratio of tubular maximum phosphate reabsorption were significantly and negatively associated with pre-transplant FGF23 until 4 months of post-transplant. Pre-transplant αKlotho was negatively associated with pre-transplant FGF23 but not FGF23 or other parameters after transplantation. CONCLUSION: FGF23 in pediatric kidney transplant patients decreased rapidly after transplantation and associated with post-transplant hypophosphatemia and increased phosphorus excretion. Post-transplant αKlotho was low early post-transplant but tended to increase subsequently. Post-transplant αKlotho was unaffected by pre-transplant FGF23 or other factors, suggesting pre-transplant chronic kidney disease status has no effect.


Assuntos
Transplante de Rim , Adolescente , Criança , Humanos , Recém-Nascido , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/metabolismo , Minerais/metabolismo , Fósforo , Estudos Prospectivos , Proteínas Klotho/metabolismo
3.
Rapid Commun Mass Spectrom ; 32(8): 665-671, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29441684

RESUMO

RATIONALE: Drug discovery studies invariably require qualitative and quantitative analyses of target compounds at every stage of drug discovery. We have developed a system combining molecular interaction analysis and mass spectrometry (LC-MS) using the principle of nanopore optical interferometry (nPOI) called molecular interaction kinetics-mass spectrometry (MIK-MS). Since nPOI has high binding capacity, the bond-dissociated compound can be directly detected using LC-MS. In this study, we use carbonic anhydrase II (CAII) as a ligand and apply six small compounds as analytes and report the affinity analysis using MIK-MS. METHODS: CAII was immobilized onto a COOH sensor chip using standard amine coupling. A reference surface was prepared by activating and subsequently blocking the surface under identical conditions. An amount of 50 µL of mix solution was injected over the reference channel and sample channel for CAII immobilization. The solutions eluting from the sensor chip were collected from the waste-line of the SKi Pro system every 30 s. Reconstructed elution samples were then injected into the LC-MS/MS system. RESULTS: A mixture containing furosemide, acetazolamide, 4-sulfamoylbenzoic acid, 5-(dimethylamino)-1-naphthalene sulfonamide (DNSA), sulfanilamide and sulpiride (15 µM each) was injected into the CAII-immobilized sensor chip, and the fractions eluted from the SKi Pro system were collected and subjected to selected reaction monitoring LC-MS characterization. Specific results were obtained for acetazolamide, DNSA, furosemide and sulpiride. The results suggest that the association-dissociation curve of a mixed sample can be obtained by one-time MIK-MS analysis. CONCLUSIONS: Six small-molecule binders of CAII were analyzed quantitatively using nPOI and MIK-MS, and the results were compared to published surface plasmon resonance (SPR) results. The nPOI and SPR results show good agreement, confirming the reliability of the analysis. Time-dependent binding results may be obtained by our MS sensorgram approach. Drugs that meet medical needs in a short period are required; this nPOI-LC-MS system is considered an important tool for rapid drug discovery.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Avaliação Pré-Clínica de Medicamentos/instrumentação , Dispositivos Lab-On-A-Chip , Espectrometria de Massas/instrumentação , Bibliotecas de Moléculas Pequenas/farmacologia , Inibidores da Anidrase Carbônica/química , Enzimas Imobilizadas/metabolismo , Desenho de Equipamento , Furosemida/química , Furosemida/farmacologia , Humanos , Interferometria/instrumentação , Cinética , Ligantes , Porosidade , Ligação Proteica , Silício/química , Bibliotecas de Moléculas Pequenas/química
4.
J Biol Chem ; 288(52): 36948-56, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24214985

RESUMO

Post-translational histone methylation is a dynamic and reversible process that is involved in the spatio-temporal regulation of gene transcription and contributes to various cellular phenotypes. Methylation of histone H3 at lysine 9 (H3K9), which is generally a transcriptional repression mark, is demethylated by H3K9-specific demethylases, leading to transcriptional activation. However, how multiple demethylases with the same substrate specificity differ in their chromatin targeting mechanisms has not been well understood. Unlike other H3K9-specific demethylases, it has been reported that JMJD1A likely forms a homodimer, but a detailed mode of dimerization and the possible link between structure and enzymatic activity have remained unresolved. Here, we report the structure-function relationship of JMJD1A in detail. First, JMJD1A forms a homodimer through its catalytic domains, bringing the two active sites close together. Second, increasing the concentration of JMJD1A facilitates efficient production of unmethylated product from dimethyl-H3K9 and decreases the release of the monomethylated intermediate. Finally, substituting one of the two active sites with an inactive mutant results in a significant reduction of the demethylation rate without changing the affinity to the intermediate. Given this evidence, we propose a substrate channeling model for the efficient conversion of dimethylated H3K9 into the unmethylated state. Our study provides valuable information that will help in understanding the redundancy of H3K9-specific demethylases and the complementary activity of their unique structures and enzymatic properties for appropriate control of chromatin modification patterns.


Assuntos
Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Modelos Biológicos , Multimerização Proteica/fisiologia , Domínio Catalítico , Linhagem Celular , Histonas/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Metilação , Mutação , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA