Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EBioMedicine ; 101: 105013, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364702

RESUMO

BACKGROUND: Influenza viruses continually acquire mutations in the antigenic epitopes of their major viral antigen, the surface glycoprotein haemagglutinin (HA), allowing evasion from immunity in humans induced upon prior influenza virus infections or vaccinations. Consequently, the influenza strains used for vaccine production must be updated frequently. METHODS: To better understand the antigenic evolution of influenza viruses, we introduced random mutations into the HA head region (where the immunodominant epitopes are located) of a pandemic H1N1 (H1N1pdm) virus from 2015 and incubated it with various human sera collected in 2015-2016. Mutants not neutralized by the human sera were sequenced and further characterized for their haemagglutination inhibition (HI) titers with human sera and with ferret sera raised to H1N1pdm viruses from 2009 to 2015. FINDINGS: The largest antigenic changes were conferred by mutations at HA amino acid position 187; interestingly, these antigenic changes were recognized by human, but not by ferret serum. H1N1pdm viruses with amino acid changes at position 187 were very rare until the end of 2018, but have become more frequent since; in fact, the D187A amino acid change is one of the defining changes of clade 6B.1A.5a.1 viruses, which emerged in 2019. INTERPRETATION: Our findings indicate that amino acid substitutions in H1N1pdm epitopes may be recognized by human sera, but not by homologous ferret sera. FUNDING: This project was supported by funding from the NIAID-funded Center for Research on Influenza Pathogenesis (CRIP, HHSN272201400008C).


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Furões , Vírus da Influenza A Subtipo H1N1/genética , Epitopos , Aminoácidos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química
2.
Viruses ; 11(4)2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987023

RESUMO

Highly pathogenic avian H5 influenza viruses persist among poultry and wild birds throughout the world. They sometimes cause interspecies transmission between avian and mammalian hosts. H5 viruses possessing the HA of subclade 2.3.4.4, 2.3.2.1, 2.2.1, or 7.2 were detected between 2015 and 2018. To understand the neutralizing epitopes of H5-HA, we characterized 15 human monoclonal antibodies (mAbs) against the HA of H5 viruses, which were obtained from volunteers who received the H5N1 vaccine that contains a subclade 2.2.1 or 2.1.3.2 virus as an antigen. Twelve mAbs were specific for the HA of subclade 2.2.1, two mAbs were specific for the HA of subclade 2.1.3.2, and one mAb was specific for the HA of both. Of the 15 mAbs analyzed, nine, which were specific for the HA of subclade 2.2.1, and shared the VH and VL genes, possessed hemagglutination inhibition and neutralizing activities, whereas the others did not. A single amino acid substitution or insertion at positions 144-147 in antigenic site A conferred resistance against these nine mAbs to the subclade 2.2.1 viruses. The amino acids at positions 144-147 are highly conserved among subclade 2.2.1, but differ from those of other subclades. These results show that the neutralizing epitope including amino acids at positions 144-147 is targeted by human antibodies, and plays a role in the antigenic difference between subclade 2.2.1 and other subclades.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Aminoácidos , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Mapeamento de Epitopos , Epitopos , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Evasão da Resposta Imune/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vírus da Influenza A/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Mutação , Testes de Neutralização
3.
Sci China Life Sci ; 62(1): 76-83, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30515728

RESUMO

Antigenic drift forces us to frequently update influenza vaccines; however, the genetic basis for antigenic variation remains largely unknown. In this study, we used clade 7.2 H5 viruses as models to explore the molecular determinants of influenza virus antigenic variation. We generated eight monoclonal antibodies (MAbs) targeted to the hemagglutinin (HA) protein of the index virus A/chicken/Shanxi/2/2006 and found that two representative antigenically drifted clade 7.2 viruses did not react with six of the eight MAbs. The E131N mutation and insertion of leucine at position 134 in the HA protein of the antigenically drifted strains eliminated the reactivity of the virus with the MAbs. We also found that the amino acid N131 in the H5 HA protein is glycosylated. Our results provide experimental evidence that glycosylation and an amino acid insertion or deletion in HA influence antigenic variation.


Assuntos
Aminoácidos/imunologia , Antígenos Virais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Sequência de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Antígenos Virais/genética , Antígenos Virais/metabolismo , Galinhas/virologia , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/metabolismo , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/metabolismo , Influenza Aviária/genética , Influenza Aviária/imunologia , Influenza Aviária/virologia , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/virologia , Homologia de Sequência de Aminoácidos
4.
PLoS Pathog ; 12(12): e1006064, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27997610

RESUMO

CD8+ cytotoxic T lymphocytes (CTLs) are critical for clearing many viral infections, and protective CTL memory can be induced by vaccination with attenuated viruses and vectors. Non-replicating vaccines are typically potentiated by the addition of adjuvants that enhance humoral responses, however few are capable of generating CTL responses. Adjuplex is a carbomer-lecithin-based adjuvant demonstrated to elicit robust humoral immunity to non-replicating antigens. We report that mice immunized with non-replicating Adjuplex-adjuvanted vaccines generated robust antigen-specific CTL responses. Vaccination by the subcutaneous or the intranasal route stimulated systemic and mucosal CTL memory respectively. However, only CTL memory induced by intranasal vaccination was protective against influenza viral challenge, and correlated with an enhancement of memory CTLs in the airways and CD103+ CD69+ CXCR3+ resident memory-like CTLs in the lungs. Mechanistically, Myd88-deficient mice mounted primary CTL responses to Adjuplex vaccines that were similar in magnitude to wild-type mice, but exhibited altered differentiation of effector cell subsets. Immune potentiating effects of Adjuplex entailed alterations in the frequency of antigen-presenting-cell subsets in vaccine draining lymph nodes, and in the lungs and airways following intranasal vaccination. Further, Adjuplex enhanced the ability of dendritic cells to promote antigen-induced proliferation of naïve CD8 T cells by modulating antigen uptake, its intracellular localization, and rate of processing. Taken together, we have identified an adjuvant that elicits both systemic and mucosal CTL memory to non-replicating antigens, and engenders protective CTL-based heterosubtypic immunity to influenza A virus in the respiratory tract. Further, findings presented in this manuscript have provided key insights into the mechanisms and factors that govern the induction and programming of systemic and protective memory CTLs in the respiratory tract.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Linfócitos T Citotóxicos/imunologia , Resinas Acrílicas/administração & dosagem , Administração Intranasal , Transferência Adotiva , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Lecitinas/administração & dosagem , Lecitinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia
5.
Curr Opin Virol ; 14: 71-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26364134

RESUMO

Currently, antiviral drugs that target specific viral protein functions are available for the treatment of influenza; however, concern regarding the emergence of drug-resistant viruses is warranted, as is the urgent need for new antiviral targets, including non-viral targets, such as host cellular factors. Viruses rely on host cellular functions to replicate, and therefore a thorough understanding of the roles of virus-host interactions during influenza virus replication is essential to develop novel anti-influenza drugs that target the host factors involved in virus replication. Here, we review recent studies that used several approaches to identify host factors involved in influenza virus replication. These studies have permitted the construction of an interactome map of virus-host interactions in the influenza virus life cycle, clarifying the entire life cycle of this virus and accelerating the development of new antiviral drugs with a low propensity for the development of resistance.


Assuntos
Antivirais/isolamento & purificação , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Hospedeiro-Patógeno , Orthomyxoviridae/fisiologia , Humanos
6.
Cell Host Microbe ; 16(6): 795-805, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25464832

RESUMO

Host factors required for viral replication are ideal drug targets because they are less likely than viral proteins to mutate under drug-mediated selective pressure. Although genome-wide screens have identified host proteins involved in influenza virus replication, limited mechanistic understanding of how these factors affect influenza has hindered potential drug development. We conducted a systematic analysis to identify and validate host factors that associate with influenza virus proteins and affect viral replication. After identifying over 1,000 host factors that coimmunoprecipitate with specific viral proteins, we generated a network of virus-host protein interactions based on the stage of the viral life cycle affected upon host factor downregulation. Using compounds that inhibit these host factors, we validated several proteins, notably Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) and JAK1, as potential antiviral drug targets. Thus, virus-host interactome screens are powerful strategies to identify targetable host factors and guide antiviral drug development.


Assuntos
Antivirais/farmacologia , Influenza Humana/metabolismo , Orthomyxoviridae/efeitos dos fármacos , Orthomyxoviridae/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Virais/metabolismo , Avaliação Pré-Clínica de Medicamentos , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/genética , Influenza Humana/virologia , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Orthomyxoviridae/genética , Ligação Proteica/efeitos dos fármacos , Proteínas Virais/genética
7.
Sci Rep ; 3: 1106, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23346363

RESUMO

Although two classes of antivirals, NA inhibitors and M2 ion channel blockers, are licensed for influenza treatment, dual resistant mutants, including highly pathogenic H5N1 viruses, have appeared. Alternative treatment options are, therefore, needed. Influenza A viral RNA (vRNA) transcription/replication is a promising target for antiviral development, since it is essential for virus replication. Accordingly, an efficient and reliable method to identify vRNA transcription/replication inhibitors is desirable. Here, we developed a cell-based screening system by establishing a cell line that stably expresses influenza viral ribonucleoprotein complex (vRNP). Compound library screening using this cell line allowed us to identify a compound that inhibits vRNA transcription/replication by using reporter protein expression from virus-like RNA as a readout and virus replication in vitro. vRNP-expressing cells have potential as a simple and convenient high-throughput screening (HTS) system, and, thus, are promising to identify vRNA transcription/replication inhibitors for various RNA viruses, especially for primary screens.


Assuntos
Antivirais/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/fisiologia , RNA Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Vetores Genéticos/genética , Células HEK293 , Humanos , Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/genética , RNA Viral/genética , Partículas de Ribonucleoproteínas em Forma de Abóbada/efeitos dos fármacos , Partículas de Ribonucleoproteínas em Forma de Abóbada/genética , Proteínas Virais/genética , Replicação Viral/genética
8.
Clin Infect Dis ; 52(4): 432-7, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21248368

RESUMO

BACKGROUND: Although influenza virus resistance to the neuraminidase inhibitor zanamivir is reported less frequently than is resistance to the neuraminidase inhibitor oseltamivir in clinical settings, it is unknown whether this difference is due to the limited use of zanamivir or to an inherent property of the drug. We therefore compared the prevalence of drug-resistant viruses and virus shedding in seasonal influenza virus-infected children treated with either oseltamivir or zanamivir. METHODS: Clinical specimens (throat or nasal swab) were collected from a total of 144 pediatric influenza patients during the 2005-2006, 2006-2007, 2007-2008, and 2008-2009 influenza seasons. Neuraminidase inhibitor-resistant mutants were detected among the isolated viruses by sequencing the viral hemagglutinin and neuraminidase genes. Sensitivity of the viruses to neuraminidase inhibitors was tested by neuraminidase inhibition assay. RESULTS: In oseltamivir- or zanamivir-treated influenza patients who were statistically comparable in their age distribution, vaccination history, and type or subtype of virus isolates, the virus-shedding period in zanamivir-treated patients was significantly shorter than that in oseltamivir-treated patients. Furthermore, the frequency of zanamivir-resistant viruses was significantly lower than that of oseltamivir-resistant viruses. CONCLUSION: In comparison with treatment with oseltamivir, treatment of pediatric patients with zanamivir resulted in the emergence of fewer drug-resistant influenza viruses and a shorter virus-shedding period. We conclude that zanamivir shows promise as a better therapy for pediatric influenza patients.


Assuntos
Farmacorresistência Viral , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Orthomyxoviridae/efeitos dos fármacos , Oseltamivir/uso terapêutico , Eliminação de Partículas Virais , Zanamivir/uso terapêutico , Adolescente , Antivirais/farmacologia , Antivirais/uso terapêutico , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Mucosa Nasal/virologia , Neuraminidase/antagonistas & inibidores , Orthomyxoviridae/isolamento & purificação , Oseltamivir/farmacologia , Faringe/virologia , RNA Viral/genética , Análise de Sequência de DNA , Resultado do Tratamento , Zanamivir/farmacologia
9.
Proc Natl Acad Sci U S A ; 105(4): 1129-33, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18212124

RESUMO

Ebola virus (EBOV), a public health concern in Africa and a potential biological weapon, is classified as a biosafety level-4 agent because of its high mortality rate and the lack of approved vaccines and antivirals. Basic research into the mechanisms of EBOV pathogenicity and the development of effective countermeasures are restricted by the current biosafety classification of EBOVs. We therefore developed biologically contained EBOV that express a reporter gene instead of the VP30 gene, which encodes an essential transcription factor. A Vero cell line that stably expresses VP30 provides this essential protein in trans and biologically confines the virus to its complete replication cycle in this cell line. This complementation approach is highly efficient because biologically contained EBOVs lacking the VP30 gene grow to titers similar to those obtained with wild-type virus. Moreover, EBOVs lacking the VP30 gene are indistinguishable in their morphology from wild-type virus and are genetically stable, as determined by sequence analysis after seven serial passages in VP30-expressing Vero cells. We propose that this system provides a safe means to handle EBOV outside a biosafety level-4 facility and will stimulate critical studies on the EBOV life cycle as well as large-scale screening efforts for compounds with activity against this lethal virus.


Assuntos
Ebolavirus/fisiologia , Replicação Viral/fisiologia , Animais , Antivirais/síntese química , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Vacinas contra Ebola/biossíntese , Vacinas contra Ebola/genética , Vacinas contra Ebola/imunologia , Ebolavirus/efeitos dos fármacos , Ebolavirus/genética , Ebolavirus/imunologia , Humanos , Projetos Piloto , Inoculações Seriadas , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Células Vero , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA