RESUMO
BACKGROUND: Modafinil improves wakefulness and attention, is approved in Japan for treatment of narcolepsy, and was reported to be effective for attention-deficit/hyperactivity disorder. However, it was reported to induce emotional instability, including mania, depression, and suicidal ideation. Such side effects may be related to changes in cognitive behavior caused by the effects of modafinil on emotional recognition. However, the effects of modafinil on the neural basis of emotional processing have not been fully verified. We used functional magnetic resonance imaging to investigate the effects of modafinil on the neural basis of auditory emotional processing. METHODS: This study adopted a placebo-controlled within-subject crossover design. Data from 14 participants were analyzed. The effects of modafinil on cerebral activation and task performance during an emotional judgement task were analyzed. RESULTS: Task accuracy decreased significantly and response time of emotional judgement was significantly delayed by modafinil, as compared with placebo. Right thalamic activation in auditory emotional processing was significantly less in the modafinil condition than in the placebo condition. In addition, reduction of right thalamic activation by modafinil was positively correlated with accuracy of emotional judgement. CONCLUSIONS: Our findings suggest that modafinil acts on the right thalamus and changes behavior and brain function associated with auditory emotional processing. These results indicate that modafinil might change emotional recognition by reducing emotional activation related to social communication.
Assuntos
Afeto/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/uso terapêutico , Emoções/fisiologia , Modafinila/uso terapêutico , Tálamo/efeitos dos fármacos , Estudos Cross-Over , Potenciais Evocados Auditivos , Humanos , Imageamento por Ressonância Magnética , Tálamo/diagnóstico por imagemRESUMO
BACKGROUND: The anatomic-electrophysiological correlation of AV nodal reentry is unclear. To localize reentrant circuits during atrial and ventricular echoes and to characterize sites of slow conduction and block, we correlated histology with electrophysiology of the AV node. METHODS AND RESULTS: In 10 isolated dog hearts, extracellular electrical activity was recorded in Koch's triangle at 208 or 247 sites (interelectrode distance, 0.5 and 0.3 mm) after removal of 0.7 to 1.5 mm of overlying atrial tissue. Resection did not affect refractory periods. Five hearts were subjected to histology. Complete atrial echoes were induced in 1 heart, incomplete atrial echoes in 5 hearts. Unidirectional conduction block occurred at the atrial-transitional cell junction in the superior area. Zones of slow conduction arose at the atrial-transitional or the transitional-compact node junction in the inferior area. Complete reentrant circuits of ventricular echoes were obtained in 5 hearts. Unidirectional conduction block occurred at the compact node-transitional cell junction in the superior area. Localized zones of slow conduction arose at the junctions between the different types of tissue in the inferior area. CONCLUSIONS: In the dog heart, tissue architecture and functional dissociation between the inferior and the superior region of the AV node enable dual physiology and reentry. Slow conduction and functional conduction block occur at the junctions between the different types of tissue in the AV nodal area. Atrial echoes were enabled by conduction block at the atrial-transitional cell junction, whereas during ventricular echoes conduction block occurred at the compact node-transitional cell junction.
Assuntos
Função Atrial/fisiologia , Nó Atrioventricular/fisiologia , Sistema de Condução Cardíaco/fisiologia , Função Ventricular/fisiologia , Animais , Mapeamento Potencial de Superfície Corporal , Fascículo Atrioventricular/fisiologia , Cães , Técnicas Eletrofisiológicas Cardíacas , Feminino , Técnicas In Vitro , MasculinoRESUMO
BACKGROUND: Paroxysmal atrial fibrillation in patients is often initiated by foci in the pulmonary veins. The mechanism of these initiating arrhythmias is unknown. The aim of this study was to determine electrophysiological characteristics of canine pulmonary veins that may predispose to initiating arrhythmias. METHODS AND RESULTS: Extracellular recordings were obtained from the luminal side of 9 pulmonary veins in 6 Langendorff-perfused dog hearts after the veins were incised from the severed end to the ostium. Pulmonary veins were paced at the distal end, the ostium, and an intermediate site. During basic and premature stimulation, extracellular electrical activity was recorded with a grid electrode that harbored 247 electrode terminals. In 4 hearts, intracellular electrograms were recorded with microelectrodes. Myocyte arrangement immediately beneath the venous walls was determined by histological analysis in 3 hearts. Extracellular mapping revealed slow and complex conduction in all pulmonary veins. Activation delay after premature stimulation could be as long as 96 ms over a distance of 3 mm. Action potential duration was shorter at the distal end of the veins than at the orifice. No evidence for automaticity or triggered activity was found. Histological investigation revealed complex arrangements of myocardial fibers that often showed abrupt changes in fiber direction and short fibers arranged in mixed direction. CONCLUSIONS: Zones of activation delay were observed in canine pulmonary veins and correlated with abrupt changes in fascicle orientation. This architecture of muscular sleeves in the pulmonary veins may facilitate reentry and arrhythmias associated with ectopic activity.