Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 42(3): 416-434, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799415

RESUMO

Frequency-to-place mapping, or tonotopy, is a fundamental organizing principle throughout the auditory system, from the earliest stages of auditory processing in the cochlea to subcortical and cortical regions. Although cortical maps are referred to as tonotopic, it is unclear whether they simply reflect a mapping of physical frequency inherited from the cochlea, a computation of pitch based on the fundamental frequency, or a mixture of these two features. We used high-resolution functional magnetic resonance imaging (fMRI) to measure BOLD responses as male and female human participants listened to pure tones that varied in frequency or complex tones that varied in either spectral content (brightness) or fundamental frequency (pitch). Our results reveal evidence for pitch tuning in bilateral regions that partially overlap with the traditional tonotopic maps of spectral content. In general, primary regions within Heschl's gyri (HGs) exhibited more tuning to spectral content, whereas areas surrounding HGs exhibited more tuning to pitch.SIGNIFICANCE STATEMENT Tonotopy, an orderly mapping of frequency, is observed throughout the auditory system. However, it is not known whether the tonotopy observed in the cortex simply reflects the frequency spectrum (as in the ear) or instead represents the higher-level feature of fundamental frequency, or pitch. Using carefully controlled stimuli and high-resolution functional magnetic resonance imaging (fMRI), we separated these features to study their cortical representations. Our results suggest that tonotopy in primary cortical regions is driven predominantly by frequency, but also reveal evidence for tuning to pitch in regions that partially overlap with the tonotopic gradients but extend into nonprimary cortical areas. In addition to resolving ambiguities surrounding cortical tonotopy, our findings provide evidence that selectivity for pitch is distributed bilaterally throughout auditory cortex.


Assuntos
Córtex Auditivo/diagnóstico por imagem , Percepção Auditiva/fisiologia , Percepção da Altura Sonora/fisiologia , Estimulação Acústica , Adulto , Córtex Auditivo/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Discriminação da Altura Tonal/fisiologia , Adulto Jovem
2.
Nat Commun ; 12(1): 4745, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362883

RESUMO

Spatial processing by receptive fields is a core property of the visual system. However, it is unknown how spatial processing in high-level regions contributes to recognition behavior. As face inversion is thought to disrupt typical holistic processing of information in faces, we mapped population receptive fields (pRFs) with upright and inverted faces in the human visual system. Here we show that in face-selective regions, but not primary visual cortex, pRFs and overall visual field coverage are smaller and shifted downward in response to face inversion. From these measurements, we successfully predict the relative behavioral detriment of face inversion at different positions in the visual field. This correspondence between neural measurements and behavior demonstrates how spatial processing in face-selective regions may enable holistic perception. These results not only show that spatial processing in high-level visual regions is dynamically used towards recognition, but also suggest a powerful approach for bridging neural computations by receptive fields to behavior.


Assuntos
Face/fisiologia , Reconhecimento Facial/fisiologia , Orientação/fisiologia , Processamento Espacial/fisiologia , Adulto , Comportamento , Encéfalo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA