Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antioxid Redox Signal ; 16(3): 185-92, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21854231

RESUMO

AIM: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. RESULTS: Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA([Ser]Sec) and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. INNOVATION: We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. CONCLUSION: XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.


Assuntos
Glutationa Peroxidase/genética , Túbulos Renais Proximais/metabolismo , Selênio/metabolismo , Animais , Membrana Basal/enzimologia , Membrana Basal/metabolismo , Microanálise por Sonda Eletrônica , Técnicas de Inativação de Genes , Glutationa Peroxidase/metabolismo , Rim/metabolismo , Túbulos Renais Proximais/enzimologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos-Toupeira , Aminoacil-RNA de Transferência/genética , Selenoproteína P/genética , Espectrometria por Raios X
2.
J Mol Biol ; 389(5): 808-18, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19379757

RESUMO

Selenium (Se) is a trace element with important roles in human health. Several selenoproteins have essential functions in development. However, the cellular and tissue distribution of Se remains largely unknown because of the lack of analytical techniques that image this element with sufficient sensitivity and resolution. Herein, we report that X-ray fluorescence microscopy (XFM) can be used to visualize and quantify the tissue, cellular, and subcellular topography of Se. We applied this technique to characterize the role of Se in spermatogenesis and identified a dramatic Se enrichment specifically in late spermatids, a pattern that was not seen in any other elemental maps. This enrichment was due to elevated levels of the mitochondrial form of glutathione peroxidase 4 and was fully dependent on the supplies of Se by selenoprotein P. High-resolution scans revealed that Se concentrated near the lumen side of elongating spermatids, where structural components of sperm are formed. During spermatogenesis, maximal Se associated with decreased phosphorus, whereas Zn did not change. In sperm, Se was primarily in the midpiece and colocalized with Cu and Fe. XFM allowed quantification of Se in the midpiece (0.8 fg) and head (0.2 fg) of individual sperm cells, revealing the ability of sperm cells to handle the amounts of this element well above its toxic levels. Overall, the use of XFM allowed visualization of tissue and cellular Se and provided important insights in the role of this and other trace elements in spermatogenesis.


Assuntos
Microscopia de Fluorescência/métodos , Selênio/análise , Espectrometria por Raios X/métodos , Espermatócitos/química , Espermatogênese , Espermatozoides/química , Testículo/química , Animais , Cobre/análise , Glutationa Peroxidase/análise , Ferro/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/química , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fósforo/análise , Cabeça do Espermatozoide/química , Peça Intermédia do Espermatozoide/química , Testículo/citologia , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA