Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 17346, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478395

RESUMO

Seeds exhibit wide variation in the fatty acid composition of their storage oil. However, the genetic basis of this variation is only partially understood. Here we have used a multi-parent advanced generation inter-cross (MAGIC) population to study the genetic control of fatty acid chain length in Arabidopsis thaliana seed oil. We mapped four quantitative trait loci (QTL) for the quantity of the major very long chain fatty acid species 11-eicosenoic acid (20:1), using multiple QTL modelling. Surprisingly, the main-effect QTL does not coincide with FATTY ACID ELONGASE 1 and a parallel genome wide association study suggested that LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASE 2 (LPCAT2) is a candidate for this QTL. Regression analysis also suggested that LPCAT2 expression and 20:1 content in seeds of the 19 MAGIC founder accessions are related. LPCAT is a key component of the Lands cycle; an acyl editing pathway that enables acyl-exchange between the acyl-Coenzyme A and phosphatidylcholine precursor pools used for microsomal fatty acid elongation and desaturation, respectively. We Mendelianised the main-effect QTL using biparental chromosome segment substitution lines and carried out complementation tests to show that a single cis-acting polymorphism in the LPCAT2 promoter causes the variation in seed 20:1 content, by altering the LPCAT2 expression level and total LPCAT activity in developing siliques. Our work establishes that oilseed species exhibit natural variation in the enzymic capacity for acyl editing and this contributes to the genetic control of storage oil composition.


Assuntos
Arabidopsis/genética , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Sementes/genética , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mapeamento Cromossômico , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos/química , Ácidos Graxos/genética , Ácidos Graxos Monoinsaturados/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Estudo de Associação Genômica Ampla , Óleos de Plantas/química , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Sementes/metabolismo
2.
Plant Physiol ; 165(1): 30-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24696520

RESUMO

Increasing the yield of oilseed crops is an important objective for biotechnologists. A number of individual genes involved in triacylglycerol metabolism have previously been reported to enhance the oil content of seeds when their expression is altered. However, it has yet to be established whether specific combinations of these genes can be used to achieve an additive effect and whether this leads to enhanced yield. Using Arabidopsis (Arabidopsis thaliana) as an experimental system, we show that seed-specific overexpression of WRINKLED1 (a transcriptional regulator of glycolysis and fatty acid synthesis) and DIACYLGLYCEROL ACYLTRANSFERASE1 (a triacylglycerol biosynthetic enzyme) combined with suppression of the triacylglycerol lipase SUGAR-DEPENDENT1 results in a higher percentage seed oil content and greater seed mass than manipulation of each gene individually. Analysis of total seed yield per plant suggests that, despite a reduction in seed number, the total yield of oil is also increased.


Assuntos
Arabidopsis/metabolismo , Engenharia Genética/métodos , Óleos de Plantas/metabolismo , Sementes/metabolismo , Triglicerídeos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Redes e Vias Metabólicas , Dados de Sequência Molecular , Plantas Geneticamente Modificadas
3.
Plant Cell ; 25(8): 3104-16, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23995083

RESUMO

Arabidopsis thaliana seed maturation is accompanied by the deposition of storage oil, rich in the essential ω-3 polyunsaturated fatty acid α-linolenic acid (ALA). The synthesis of ALA is highly responsive to the level of fatty acid desaturase3 (FAD3) expression, which is strongly upregulated during embryogenesis. By screening mutants in leafy cotyledon1 (LEC1)-inducible transcription factors using fatty acid profiling, we identified two mutants (lec1-like and bzip67) with a seed lipid phenotype. Both mutants share a substantial reduction in seed ALA content. Using a combination of in vivo and in vitro assays, we show that bZIP67 binds G-boxes in the FAD3 promoter and enhances FAD3 expression but that activation is conditional on bZIP67 association with LEC1-like (L1L) and nuclear factor-YC2 (NF-YC2). Although FUSCA3 and abscisic acid insensitive3 are required for L1L and bZIP67 expression, neither protein is necessary for [bZIP67:L1L:NF-YC2] to activate FAD3. We conclude that a transcriptional complex containing L1L, NF-YC2, and bZIP67 is induced by LEC1 during embryogenesis and specifies high levels of ALA production for storage oil by activating FAD3 expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , DNA Bacteriano/genética , Ativação Enzimática , Ácidos Graxos Dessaturases/genética , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Mutação/genética , Tamanho do Órgão , Fosfatidilcolinas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Ativação Transcricional/genética , Triglicerídeos/metabolismo
4.
Plant Physiol ; 162(3): 1282-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23686420

RESUMO

There has been considerable interest recently in the prospect of engineering crops to produce triacylglycerol (TAG) in their vegetative tissues as a means to achieve a step change in oil yield. Here, we show that disruption of TAG hydrolysis in the Arabidopsis (Arabidopsis thaliana) lipase mutant sugar-dependent1 (sdp1) leads to a substantial accumulation of TAG in roots and stems but comparatively much lower TAG accumulation in leaves. TAG content in sdp1 roots increases with the age of the plant and can reach more than 1% of dry weight at maturity, a 50-fold increase over the wild type. TAG accumulation in sdp1 roots requires both ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) and PHOSPHATIDYLCHOLINE:DIACYLGLYCEROL ACYLTRANSFERASE1 and can also be strongly stimulated by the provision of exogenous sugar. In transgenic plants constitutively coexpressing WRINKLED1 and DGAT1, sdp1 also doubles the accumulation of TAG in roots, stems, and leaves, with levels ranging from 5% to 8% of dry weight. Finally, provision of 3% (w/v) exogenous Suc can further boost root TAG content in these transgenic plants to 17% of dry weight. This level of TAG is similar to seed tissues in many plant species and establishes the efficacy of an engineering strategy to produce oil in vegetative tissues that involves simultaneous manipulation of carbohydrate supply, fatty acid synthesis, TAG synthesis, and also TAG breakdown.


Assuntos
Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Triglicerídeos/metabolismo , Aciltransferases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/genética , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Óleos de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sacarose/metabolismo , Sacarose/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triglicerídeos/genética
5.
Plant Biotechnol J ; 11(3): 355-61, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23171303

RESUMO

Increasing the productivity of oilseed crops is an important challenge for plant breeders and biotechnologists. To date, attempts to increase oil production in seeds via metabolic pathway engineering have focused on boosting synthetic capacity. However, in the tissues of many organisms, it is well established that oil levels are determined by both anabolism and catabolism. Indeed, the oil content of rapeseed (Brassica napus L.) has been reported to decline by approximately 10% in the final stage of development, as the seeds desiccate. Here, we show that RNAi suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase gene family during seed development results in up to an 8% gain in oil yield on either a seed, plant or unit area basis in the greenhouse, with very little adverse impact on seed vigour. Suppression of lipolysis could therefore constitute a new method for enhancing oil yield in oilseed crops.


Assuntos
Brassica napus/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Brassica napus/crescimento & desenvolvimento , Dessecação , Família Multigênica , Interferência de RNA , Sementes/crescimento & desenvolvimento
6.
Plant Physiol ; 157(2): 866-75, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21825108

RESUMO

Triacylglycerol (TAG) is a major storage reserve in many plant seeds. We previously identified a TAG lipase mutant called sugar-dependent1 (sdp1) that is impaired in TAG hydrolysis following Arabidopsis (Arabidopsis thaliana) seed germination (Eastmond, 2006). The aim of this study was to identify additional lipases that account for the residual TAG hydrolysis observed in sdp1. Mutants were isolated in three candidate genes (SDP1-LIKE [SDP1L], ADIPOSE TRIGLYCERIDE LIPASE-LIKE, and COMPARATIVE GENE IDENTIFIER-58-LIKE). Analysis of double, triple, and quadruple mutants showed that SDP1L is responsible for virtually all of the residual TAG hydrolysis present in sdp1 seedlings. Oil body membranes purified from sdp1 sdp1L seedlings were deficient in TAG lipase activity but could still hydrolyze di- and monoacylglycerol. SDP1L is expressed less strongly than SDP1 in seedlings. However, SDP1L could partially rescue TAG breakdown in sdp1 seedlings when expressed under the control of the SDP1 or 35S promoters and in vitro assays showed that both SDP1 and SDP1L can hydrolyze TAG, in preference to diacylglycerol or monoacylglycerol. Seed germination was slowed in sdp1 sdp1L and postgerminative seedling growth was severely retarded. The frequency of seedling establishment was also reduced, but sdp1 sdp1L was not seedling lethal under normal laboratory growth conditions. Our data show that together SDP1 and SDP1L account for at least 95% of the rate of TAG hydrolysis in Arabidopsis seeds, and that this hydrolysis is important but not essential for seed germination or seedling establishment.


Assuntos
Arabidopsis/fisiologia , Germinação , Lipase/genética , Lipase/metabolismo , Óleos de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Sementes/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lipase Lipoproteica/metabolismo , Monoacilglicerol Lipases/metabolismo , Mutação , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA