Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Endocrinology ; 153(2): 683-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22202165

RESUMO

Hypothalamic α-melanocyte-stimulating hormone (α-MSH) plays a central role in regulating energy uptake and expenditure. Prolyl carboxypeptidase (PRCP), a protease expressed in the hypothalamus, is responsible for the degradation of α-MSH. PRCP null animals (PRCP(gt/gt) mice) display elevated α-MSH in the hypothalamus, lower body weight, and are protected from diet induced obesity. Here, we report that PRCP(gt/gt) mice have a significant decrease in fat mass, although an increase in lean mass was also observed. In agreement with low fat accumulation, reduced leptin levels were found. Consistent with the effect of α-MSH on energy metabolism, PRCP(gt/gt) mice had increased energy expenditure with elevated circulating thyroid hormone levels and brown adipose tissue uncoupling protein 1 mRNA levels compared with control mice when exposed to regular diet. TRH mRNA levels in the PVN were significantly higher in fed PRCP(gt/gt) animals compared with fed wild-type controls. Fasting significantly decreased TRH mRNA levels in both PRCP(gt/gt) and wild-type (WT) mice. However, TRH mRNA levels in fasted PRCP(gt/gt) animals were significantly higher than those of fasted WT mice. Refeeding analysis after fasting showed a reduced food intake in PRCP(gt/gt) compared with WT mice. Finally, TRH mRNA levels in T(3)-treated hypothyroid PRCP(gt/gt) mice showed a non significant reduction compared with those of hypothyroid PRCP(gt/gt) mice, supporting the impairment of the hypothalamo-pituitary-thyroid axis in PRCP(gt/gt) mice. All together, these data confirm that PRCP plays a role in the regulation of energy metabolism.


Assuntos
Carboxipeptidases/metabolismo , Metabolismo Energético/fisiologia , Glândula Tireoide/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Carboxipeptidases/genética , Regulação da Expressão Gênica/fisiologia , Hipotálamo/enzimologia , Hipotireoidismo/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tireotropina/genética , Tireotropina/metabolismo , Tri-Iodotironina/metabolismo , Proteína Desacopladora 1
2.
Nat Med ; 17(9): 1121-7, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21873987

RESUMO

Previous studies have proposed roles for hypothalamic reactive oxygen species (ROS) in the modulation of circuit activity of the melanocortin system. Here we show that suppression of ROS diminishes pro-opiomelanocortin (POMC) cell activation and promotes the activity of neuropeptide Y (NPY)- and agouti-related peptide (AgRP)-co-producing (NPY/AgRP) neurons and feeding, whereas ROS-activates POMC neurons and reduces feeding. The levels of ROS in POMC neurons were positively correlated with those of leptin in lean and ob/ob mice, a relationship that was diminished in diet-induced obese (DIO) mice. High-fat feeding resulted in proliferation of peroxisomes and elevated peroxisome proliferator-activated receptor γ (PPAR-γ) mRNA levels within the hypothalamus. The proliferation of peroxisomes in POMC neurons induced by the PPAR-γ agonist rosiglitazone decreased ROS levels and increased food intake in lean mice on high-fat diet. Conversely, the suppression of peroxisome proliferation by the PPAR antagonist GW9662 increased ROS concentrations and c-fos expression in POMC neurons. Also, it reversed high-fat feeding-triggered elevated NPY/AgRP and low POMC neuronal firing, and resulted in decreased feeding of DIO mice. Finally, central administration of ROS alone increased c-fos and phosphorylated signal transducer and activator of transcription 3 (pStat3) expression in POMC neurons and reduced feeding of DIO mice. These observations unmask a previously unknown hypothalamic cellular process associated with peroxisomes and ROS in the central regulation of energy metabolism in states of leptin resistance.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , PPAR gama/metabolismo , Peroxissomos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Relacionada com Agouti/metabolismo , Anilidas/farmacologia , Animais , Linhagem Celular , Ingestão de Alimentos/fisiologia , Eletrofisiologia , Proteínas de Fluorescência Verde , Hipotálamo/citologia , Camundongos , Camundongos Obesos , Neuropeptídeo Y/metabolismo , PPAR gama/antagonistas & inibidores , Reação em Cadeia da Polimerase , Pró-Opiomelanocortina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA