Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lab Chip ; 20(3): 446-467, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31932816

RESUMO

Over the last decade, progress has been made on the development of microphysiological systems (MPS) for absorption, distribution, metabolism, and excretion (ADME) applications. Central to this progress has been proof of concept data generated by academic and industrial institutions followed by broader characterization studies, which provide evidence for scalability and applicability to drug discovery and development. In this review, we describe some of the advances made for specific tissue MPS and outline the desired functionality for such systems, which are likely to make them applicable for practical use in the pharmaceutical industry. Single organ MPS platforms will be valuable for modelling tissue-specific functions. However, dynamic organ crosstalk, especially in the context of disease or toxicity, can only be obtained with the use of inter-linked MPS models which will enable scientists to address questions at the intersection of pharmacokinetics (PK) and efficacy, or PK and toxicity. In the future, successful application of MPS platforms that closely mimic human physiology may ultimately reduce the need for animal models to predict ADME outcomes and decrease the overall risk and cost associated with drug development.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Preparações Farmacêuticas/metabolismo , Animais , Desenvolvimento de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Indústria Farmacêutica , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Preparações Farmacêuticas/química
2.
Pharm Res ; 33(5): 1204-19, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26869174

RESUMO

PURPOSE: To evaluate an alternative in vitro system which can provide more quantitatively accurate drug drug interaction (DDI) prediction for 10 protein kinase inhibitors for which DDI risk was over-predicted by inhibition data generated in human liver microsomes (HLM). METHODS: Three cryopreserved human hepatocyte (hHEP) systems: 1) plated hHEPs; 2) hHEPs suspended in Dulbecco's Modified Eagle Medium (DMEM) and 3) hHEPs suspended in human plasma (plasma hHEPs) were developed to detect CYP3A time dependent inhibition, and the static mechanistic model was used to predict clinical outcomes. RESULTS: A general trend was observed in the CYP3A inactivation potency (k inact /K I, app ) as HLM > plated > DMEM ≥ plasma hHEPs. Using the static mechanistic model, DDIs predicted using parameters estimated from plated, DMEM and plasma hHEPs had 84, 74 and 95% accuracy (out of 19 clinical interaction studies) within 2-fold of the reported interaction, respectively. They demonstrated significant improvement compared to the DDIs predicted using parameters estimated from HLMs where 58% accuracy was obtained. CONCLUSIONS: Based on 19 DDIs, plasma hHEPs demonstrate a more reliable clinical DDI prediction for 10 protein kinase inhibitors and prototypical CYP3A time dependent inhibitors.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Hepatócitos/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Ensaios Enzimáticos/métodos , Hepatócitos/metabolismo , Humanos , Cinética , Microssomos Hepáticos/metabolismo , Modelos Biológicos , Plasma/efeitos dos fármacos , Plasma/metabolismo
3.
Drug Metab Dispos ; 41(9): 1598-609, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23792813

RESUMO

Drug-drug interactions (DDIs) between therapeutic proteins (TPs) and small-molecule drugs have recently drawn the attention of regulatory agencies, the pharmaceutical industry, and academia. TP-DDIs are mainly caused by proinflammatory cytokine or cytokine modulator-mediated effects on the expression of cytochrome P450 enzymes. To build consensus among industry and regulatory agencies on expectations and challenges in this area, a working group was initiated to review the preclinical state of the art. This white paper represents the observations and recommendations of the working group on the value of in vitro human hepatocyte studies for the prediction of clinical TP-DDI. The white paper was developed following a "Workshop on Recent Advances in the Investigation of Therapeutic Protein Drug-Drug Interactions: Preclinical and Clinical Approaches" held at the Food and Drug Administration White Oak Conference Center on June 4 and 5, 2012. Results of a workshop poll, cross-laboratory data comparisons, and the overall recommendations of the in vitro working group are presented herein. The working group observed that evaluation of TP-DDI for anticytokine monoclonal antibodies is currently best accomplished with a clinical study in patients with inflammatory disease. Treatment-induced changes in appropriate biomarkers in phase 2 and 3 studies may indicate the potential for a clinically measurable treatment effect on cytochrome P450 enzymes. Cytokine-mediated DDIs observed with anti-inflammatory TPs cannot currently be predicted using in vitro data. Future success in predicting clinical TP-DDIs will require an understanding of disease biology, physiologically relevant in vitro systems, and more examples of well conducted clinical TP-DDI trials.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Proteínas/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Avaliação Pré-Clínica de Medicamentos , Indústria Farmacêutica , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Proteínas/farmacologia , Estados Unidos , United States Food and Drug Administration
4.
Drug Metab Dispos ; 37(6): 1259-68, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19307295

RESUMO

Prototypic CYP3A4 inducers were tested in a pregnane X receptor (PXR) reporter gene assay, Fa2N-4 cells, HepaRG cells, and primary human hepatocytes, along with negative controls, using CYP3A4 mRNA and activity endpoints, where appropriate. Over half of the compounds tested (14 of 24) were identified as time-dependent inhibitors of CYP3A4 and high mRNA/activity ratios (>10) were consistent with CYP3A4 time-dependent inhibition for compounds such as troleandomycin, ritonavir, and verapamil. Induction response was compared between two human donors; there was an excellent correlation in the EC(50) estimates (r(2) = 0.89, p < 0.001), and a weak but statistically significant correlation was noted for maximum observed induction at an optimum concentration (E(max)) (r(2) = 0.38, p = 0.001). E(max) and EC(50) estimates determined from the PXR reporter gene assay and Fa2N-4 and HepaRG cells were compared with those from hepatocytes. Overall, EC(50) values generated using hepatocytes agreed with those generated in the PXR reporter gene assay (r(2) = 0.85, p < 0.001) and Fa2N-4 (r(2) = 0.65, p < 0.001) and HepaRG (r(2) = 0.99, p < 0.001) cells. However, E(max) values generated in hepatocytes were only significantly correlated to those determined in Fa2N-4 (r(2) = 0.33, p = 0.005) and HepaRG cells (r(2) = 0.79, p < 0.001). "Gold standard" cytochrome P450 induction data can be generated using primary human hepatocytes, but a restricted, erratic supply and interdonor variability somewhat restrict routine application within a drug discovery setting. HepaRG cells are a valuable recent addition to the armory of in vitro tools for assessing CYP3A4 induction and seem to be an excellent surrogate of primary cells.


Assuntos
Citocromo P-450 CYP3A/biossíntese , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Células Cultivadas , Desenho de Fármacos , Indução Enzimática/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Preparações Farmacêuticas , Receptor de Pregnano X , Receptores de Esteroides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA