Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 1): 127733, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918591

RESUMO

In the present study, the effect of zein and different amounts of bacterial cellulose (BC; 1, 2 and 3 wt%) on the physical, mechanical and barrier properties of flaxseed mucilage/carboxymethyl cellulose (FM/CMC) composite was investigated. The appearance of the absorption band at 1320cm-1 in the ATR-FTIR spectra of nanocomposites indicated the successful introduction of zein into their structure. The characteristic peak at 2θ of 9° belonging to zein disappeared in XRD patterns of the prepared composites suggesting the successful coating of zein via hydrogen bonding interactions. SEM images proved the formation of semi-spherical zein microparticles in the FM/CMC matrix. TGA plots ascertained the addition of zein and nanocellulose caused a significant increase in the thermal stability of FM/CMC film, although zein showed a greater effect. The presence of zein and nanocellulose increased the mechanical strength of nanocomposites. The WVP of FM/CMC decreased after the incorporation of zein and nanocellulose, which created a tortuous path for the diffusion of water molecules. The zein particles exhibited a greater influence on improving the mechanical and barrier properties compared to nanocellulose. FM/CMC-Z film exhibited the highest mechanical strength (49.07 ± 5.89 MPa) and the lowest WVP (1.179 ± 0.076). The composites containing oregano essential oil (EO) showed higher than 60 % antibacterial properties. The bactericidal efficiency of FM/CMC/Z-EO and FM/CMC/Z-EO/BC1 nanocomposites decreased about 10% compared to FM/CMC/EO and FM/CMC-Z/BC1. This evidenced the successful encapsulation of EO molecules in zein particles. According to the in vitro release study, entrapment of EO into zein particles could delay the release and provide the extended antimicrobial effect.


Assuntos
Linho , Nanocompostos , Óleos Voláteis , Origanum , Zeína , Celulose/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Zeína/química , Óleo de Semente do Linho , Polissacarídeos , Nanocompostos/química
2.
J Environ Manage ; 326(Pt A): 116729, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375423

RESUMO

Among the various techniques used to clean up polluted environments, bioremediation is the most cost-effective and eco-friendly option. The diversity of microbial communities in a consortium can significantly affect the biodegradability of hazardous organic pollutants, particularly for in situ bioremediation processes. This is largely attributed to interactions between members of a consortium. In this study, the effect of internal diffusion limitations in substrate model biodegradation was firstly examined by immobilized bacterial cells at different particle sizes produced by the electrospray technique. According to the obtained results, for particles with large size, the effectiveness factors (η) were about 0.58-0.67, and the resistance to diffusive on the biodegradation rate was significant, while with decreasing the particle size, η increases and approaches about 1. After selection of suitable bead size, heavy crude oil biodegradation was investigated using a consortium consisting of three oil-degrading bacterial strains at different treatment systems. The removal rate in the suspended co-culture system stands at minimum value of 38% with all three strains which is an indicator of negative interactions among consortium members. Independent immobilization of microorganisms minimizes the competition and antagonistic interactions between strains and leads to more crude oil removal, so that, the biodegradation rate reached 60%.


Assuntos
Poluição por Petróleo , Petróleo , Petróleo/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Células Imobilizadas/metabolismo
3.
Environ Monit Assess ; 193(6): 328, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33956244

RESUMO

Petroleum contamination of marine environments due to exploitation and accidental spills causes serious harm to ecosystems. Bioremediation with immobilized microorganisms is an environmentally friendly and cost-effective emerging technology for treating oil-polluted environments. In this study, Bacillus licheniformis was entrapped in Ca alginate beads using the electrospray technique for light crude oil biodegradation. Three important process variables, including inoculum size (5-15% v/v), initial oil concentration (1500-3500 ppm), and NaCl concentration (0-30 g/L), were optimized to obtain the best response of crude oil removal using response surface methodology (RSM) and Box-Behnken design (BBD). The highest crude oil removal of 79.58% was obtained for 1500 ppm of crude oil after 14 days using immobilized cells, and it was lower for freely suspended cells (64.77%). Our result showed similar trends in the effect of variables on the oil biodegradation rate in both free cell (FC) and immobilized cell (IC) systems. However, according to the analysis of variance (ANOVA) results, the extent of the variables' effectiveness was different in FC and IC systems. In the immobilized cell system, all variables had a greater effect on the rate of light crude oil degradation. Moreover, to evaluate the effectiveness of free and immobilized B. licheniformis in bioremediation of an actual polluted site, the crude oil spill in natural seawater was investigated. The results suggested the stability of beads in the seawater, as well as high degradation of petroleum hydrocarbons by free and immobilized cells in the presence of indigenous microorganisms.


Assuntos
Bacillus licheniformis , Poluição por Petróleo , Petróleo , Alginatos , Biodegradação Ambiental , Ecossistema , Monitoramento Ambiental , Petróleo/análise , Poluição por Petróleo/análise , Água do Mar
4.
Ecotoxicol Environ Saf ; 205: 111103, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32818878

RESUMO

Oil pollution is a serious international concern due to its harmful effect on human health and the environment. This study aims to investigate the effective factors on the biodegradation of Iranian heavy crude oil by Bacillus licheniformis. For this purpose, oil removal from the artificial seawater was studied by response surface methodology (RSM). After the screening experiments, pH (4-10), NaCl concentration (0-10 g/L), and oil concentration (500-4500 ppm) were selected as influential factors. Moreover, to evaluate the bacterial capability in bioremediation of an actual polluted site, crude oil spill with a salinity of 35 g/L was experimentally simulated. The proposed model in this study clearly shows that both selected individual factors and their interactions are significantly effective on the crude oil biodegradation capacity. The results showed that Bacillus licheniformis was able to degrade crude oil at different concentrations of oil, especially at low concentrations, which are challenging in actual polluted sites. 15%-66% removal was achieved for 500-4500 ppm of crude oil after 14 days. Furthermore, according to the obtained results, this bacterium can tolerate the salinity up to 3.5%. At this salinity level, crude oil removal was 23.43 and 25.64% in neutral and alkaline conditions, respectively. Process factors were optimized, and 54.8% of crude oil was removed at optimum conditions i.e., 3500 ppm crude oil concentration, 2.5 g/L of NaCl and pH equal to 8.5. Finally, it can be concluded that the selected bacterium of this study can be more effective in harsh environments such as hypersaline and alkaline conditions.


Assuntos
Bacillus licheniformis/metabolismo , Poluição por Petróleo/análise , Petróleo/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Irã (Geográfico) , Modelos Teóricos , Petróleo/metabolismo , Salinidade , Água do Mar/microbiologia , Poluentes Químicos da Água/metabolismo
5.
Ecotoxicology ; 26(6): 752-761, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28429184

RESUMO

The purpose of this study was to assess the possible protective role of exogenous salicylic acid (SA), sodium nitroprusside (SNP), a donor of nitric oxide, and their combination on 21-day-old safflower (Carthamus tinctorius L.) seedlings grown under zinc (Zn) stress. The results revealed that exposure to 500 µM ZnSO4.7H2O for 10 days markedly reduced the root and shoot dry weights in Zn-treated plants, while the application of SA, SNP and specially SA + SNP significantly increased the root and shoot dry weights in seedlings subjected to Zn stress. Addition of SA, SNP and SA + SNP interestingly reduced root-to-shoot translocation of zinc and increased significantly the level of glutathione (GSH) and ascorbate (ASC) in leaves of Zn-stressed plants. The Zn-treated plants supplemented with SA and SNP revealed an improved activity of ascorbate-glutathione cycle enzymes and those enzymes which are involved in glyoxalase system as compared to the plants treated with Zn only. However, no significant relationship was found between SA or SNP supplementation and glutathione S-transferase activity in Zn-stressed plants. These findings demonstrate that exogenous application of SA or SNP could ameliorate the negative effects of Zn on safflower plants probably by stimulation of antioxidant defense and glyoxalase systems.


Assuntos
Carthamus tinctorius/fisiologia , Óxido Nítrico/metabolismo , Ácido Salicílico/metabolismo , Poluentes do Solo/toxicidade , Zinco/toxicidade , Antioxidantes/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Nitroprussiato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA