Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biol Futur ; 71(3): 195-208, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34554518

RESUMO

Bioactive peptides (BPs) are 3-20 amino acid residues, with a molecular weight lower than 6 kDa; originated from the breakdown of proteins by endogenous and exogenous peptidases. While intact in protein these peptides do not exert any biological activity, but as they release from their parent protein, they exert various pharmacological activities such as antidiabetic, antihypertensive, anticancerous, anti-inflammatory, antimicrobial, antioxidant, and immunomodulatory. Such peptides exist in all living organism like plants, animals, marine organism and also present in food products derived from them. BPs obtained from dairy food products, cereals, vegetables have been gaining much more importance now-a-days, but little work has been done on bioactive peptides obtained from medicinal plants. Some of the medicinal plants such as Tinospora cordifolia Sterculia foetida, Benincasa hispida, Parkia speciosa, Linum usitatissimum, Salvia hispanica and Ziziphus jujube have been explored for bioactive peptides. Current review is aimed to provide a complete information of medicinal plants derived BPs along with the surge of new materials, new plants which will provide more solutions for handling some of the major human health problems of twenty-first century. This review will also be helpful to researchers in providing valuable information about the extraction, separation, characterization of BPs, their known peptide sequences and various pharmacological activities exerted by medicinal plants-derived bioactive peptides.


Assuntos
Peptídeos/uso terapêutico , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química , Bioprospecção , Avaliação Pré-Clínica de Medicamentos , Humanos , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Peptídeos/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/metabolismo
2.
J Steroid Biochem Mol Biol ; 97(1-2): 203-11, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16081281

RESUMO

Prostate cancer metastasizes almost exclusively into the bone whereby it induces primarily an osteoblastic response. Non-calcemic vitamin D analogs have been shown to inhibit proliferation of prostate cancer cells in culture and inhibit their growth as subcutaneous xenografts in mice. However, their effect on prostate cancer cell growth in the bone has not been examined. In the present study, we inoculated the osteoblastic prostate cancer cell line MDA-PCa 2b into the bone of male SCID mice and examined the effect of the low-calcemic hybrid analog 1alpha-hydroxymethyl-16-ene-26,27-bishomo-25-hydroxy vitamin D(3) (JK-1626-2) on their ability to induce bone lesions. We found that 7 weeks after inoculation of MDA-PCa 2b cells, 90% of the mice in the vehicle-treated group had significant bone lesions that were detectable by micro-computed tomography and characterized by thickening of the cortical bone and ossification of the epiphysis. Only 30% of the mice in the analog-treated group (daily injections of 4microg/kg, 5 days/week for up to 7 weeks) had detectable bone lesions. Histological examination of the decalcified tumor-bearing bones has shown that tumor cells completely replaced the bone marrow in the diaphysis, and destroyed the trabecular bone in the metaphysis in 90% of the vehicle-treated mice. In contrast, the metaphysis of 60% of analog-treated mice appeared normal, although tumor cells were still found in the diaphysis of 70% of the bones in the analog-treated group. There was no evidence of hypercalcemia in any of the analog-treated mice. In a co-culture, MDA-PCa 2b cells induced a profound mitogenic response in osteoblasts followed by enhanced differentiation. However, in the presence of the analog the mitogenic response of the osteoblasts to the malignant cells was significantly attenuated. These experiments led to the hypothesis that, in vivo, JK-1626-2 prevented the metastatic bone lesions by inhibiting the mitogenic response of osteoblasts to growth factors produced by MDA-PCa 2b cells.


Assuntos
Calcifediol/análogos & derivados , Calcifediol/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/prevenção & controle , Animais , Cálcio/metabolismo , Células Cultivadas , Progressão da Doença , Masculino , Camundongos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA