Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25284, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322847

RESUMO

Ustukhuddus (Lavandula stoechas L.) has been extensively used orally and topically in treating various neurological disorders, including dementia. The optimum potential of traditional dosage forms of Ustukhuddus is limited for various reasons. Transdermal drug delivery system (TDDS) is a novel means of drug delivery and is known to overcome the drawbacks associated with traditional dosage forms. The current study aimed at fabricating and evaluating Ustukhuddus hydro-alcoholic extract (UHAE) and essential oil (UEO) loaded matrix-type transdermal patches having a combination of hydrophilic - hydroxyl propyl methyl cellulose (HPMC) and hydrophobic - ethyl cellulose (EC) polymers. ATR-FTIR, DSC, XRD, and SEM analysis were carried out to study drug-polymer interactions, confirming the formation of developed patches and drug compatibility with excipients. We assessed the fabricated patches to evaluate their physicochemical properties, in vitro drug release, and permeation characteristics via ex vivo experiments. The physicochemical characteristics of patches showcased the development of good and stable films with clarity, smoothness, homogeneity, optimum flexibility and free from causing skin irritancy or sensitization. In vitro drug release and ex vivo permeation profile of developed patches were evaluated employing Franz diffusion cells. UHAE and UEO patches exhibited a cumulative drug release of 81.61 and 85.24 %, respectively, in a sustained-release manner and followed non-Fickian release mechanisms. The ex vivo permeation data revealed 66.82 % and 76.41 % of drug permeated from UHAE and UEO patches, respectively. The current research suggests that the formulated patches are more suitable for TDDS and hold potential significance in the treatment of dementia, contributing to enhanced patient compliance, thereby highlighting the implication of Unani Medicine in Nisyan (Dementia) treatment.

2.
Mol Biol Rep ; 50(9): 7173-7182, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37410347

RESUMO

BACKGROUND: The conidial Ascomycota fungus Wilsonomyces carpophilus causing shot hole in stone fruits is a major constraint in the production of stone fruits worldwide. Shothole disease symptoms appear on leaves, fruits, and twigs. Successful isolation of the pathogen from different hosts on synthetic culture medium is a time consuming and tedious procedure for identification of the pathogen based on morpho-cultural characterization. METHODS AND RESULTS: The present research was carried out to develop a successful PCR based early detection protocol for the shot hole disease of stone fruits, viz., peach, plum, apricot, cherry, and almond using the pathogen specific SSR markers developed from the Wilsonomyces carpophilus genome using Genome-wide Microsatellite Analysing Tool package (GMATA) software. Diseased leaf samples of different stone fruits were collected from the SKUAST-K orchard and the pathogen was isolated on potato dextrose agar (PDA) medium and maintained on Asthana and Hawkers' medium with a total of 50 pathogen isolates comprised of 10 isolates each from peach, plum, apricot, cherry and almond. The DNA was extracted from both healthy and infected leaf samples of different stone fruits. The DNA was also extracted from the isolated pathogen cultures (50 isolates). Out of 2851 SSR markers developed, 30 SSRs were used for the successful amplification of DNA extracted from all the 50 pathogen isolates. These SSRs were used for the amplification DNA from shot hole infected leaf samples of different stone fruits, but the amplification was not observed in the control samples (DNA from healthy leaves), thus confirming the detection of this disease directly from the shot hole infected samples using PCR based SSR markers. To our knowledge, this forms the first report of SSR development for the Wilsonomyces carpophilus and their validation for the detection of shot hole disease directly from infected leaves. CONCLUSION: PCR based SSR makers were successfully developed and used for the detection of Wilsonomyces carpophilus causing shot hole disease in stone fruits including almond in nuts for the first time. These SSR markers could successfully detect the pathogen directly from the infected leaves of stone fruits namely peach, plum, apricot and cherry including almond from the nuts.


Assuntos
Ascomicetos , Prunus domestica , Frutas/microbiologia , Ascomicetos/genética , Reação em Cadeia da Polimerase , Prunus domestica/genética
3.
J Tradit Complement Med ; 13(2): 150-160, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970455

RESUMO

Gut microbiota contributes to diverse mammalian processes including the metabolic functions of drugs. It is a potential new territory for drug targeting, especially for dietary natural compounds such as tannins, flavonoids, steroidal glycosides, anthocyanins, lignans, alkaloids, and others. Because most herbal medicines are orally administered, the chemical profile and corresponding bioactivities of herbal medicines may be altered and implication to ailments by specific microbiota through gut microbiota metabolisms (GMMs) and gut microbiota biotransformations (GMBTs). In this review, briefly introducing the interactions between different categories of natural compounds and gut microbiota produced countless microbial degraded or fragmented metabolites with their biological significance in rodent-based models. From natural product chemistry division, thousands of molecules are produced, degraded, synthesized, and isolated from natural sources but exploited due to lack of biological significance. In this direction, we add a Bio-Chemoinformatics approach to get clues of biology through a specific microbial assault to (Natural products) NPs.

4.
Plants (Basel) ; 12(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771538

RESUMO

Adhatoda vasica (L.), Nees is a widespread plant in Asia. It is used in Ayurvedic and Unani medications for the management of various infections and health disorders, especially as a decoction to treat cough, chronic bronchitis, and asthma. Although it has a diverse metabolomic profile, this plant is particularly known for its alkaloids. The present study is the first to report a broad range of present compounds, e.g., α-linolenic acid, acetate, alanine, threonine, valine, glutamate, malate, fumaric acid, sucrose, ß-glucose, kaempferol analogues, quercetin analogues, luteolin, flavone glucoside, vasicine and vasicinone, which were identified by NMR spectroscopy-based metabolomics. Multivariate data analysis was used to analyze 1H-NMR bucketed data from a number of Adhatoda vasica leave samples collected from eight different regions in Pakistan. The results showed large variability in metabolomic fingerprints. The major difference was on the basis of longitude/latitude and altitude of the areas, with both primary and secondary metabolites discriminating the samples from various regions.

5.
J Biomol Struct Dyn ; 41(19): 10161-10170, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36636828

RESUMO

Coronavirus family consist of a member known as SARS-CoV-2, spread drastically in 2019 (Covid-19), affecting millions of people worldwide. Till date there is no clear-clinical therapy or drug, targeted to cure this serious disease. Researches are going on to prevent this corona virus. Here, we tried to explore a novel SARS-CoV-2 papain-like protease as a potential inhibitor. Finally, eugenol was docked with this protease to find prime SARS-inhibitors. In silico studies revealed that eugenol binds to the active site of SARS-CoV-2 papain-like protease with appropriate binding. Moreover, the MD simulation for 100 ns and MMPBSA calculation reveals that eugenol possess potential phytotherapeutic properties against COVID-19. The interaction of eugenol with human serum albumin has been examined by using fluorescence, UV-vis spectroscopy, circular dichroism as well as computational techniques such as molecular docking, molecular dynamic simulation and MMPBSA calculation. Overall investigation shows eugenol having good affinity for HSA Ka 6.80 × 106 M-1.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Humanos , Eugenol/farmacologia , Simulação de Acoplamento Molecular , SARS-CoV-2 , Dicroísmo Circular , Descoberta de Drogas , Simulação de Dinâmica Molecular , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia
6.
Mol Biol Rep ; 50(4): 3141-3153, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36693987

RESUMO

BACKGROUND: Mineral stress is one of the dominating abiotic stresses, which leads to decrease in crop production. Selenium (Se) seed priming is a recent approach to mitigate the plant's mineral deficiency stress. Although not an essential element, Se has beneficial effects on the plants in terms of growth, quality, yield and plant defense system thus, enhancing plant tolerance to mineral deficiency. METHODS AND RESULTS: The present research was accomplished to find out the effect of Se priming on common bean plant (SFB-1 variety) under phosphorus (P) stress. The seeds were grown invitro on four different MGRL media which are normal MGRL media as control with non-Se primed seeds (Se- P+), non -Se primed seeds grown on P deficient MGRL media (Se- P-), Se primed seeds grown on normal MGRL media (Se+P+) and Se primed seeds grown on P deficient MGRL media (Se+P -). The various morphological and biochemical parameters such as proline content, total sugar content, polyphenols and expression of proteins were analyzed under P stress. The results showed that Se priming has significantly (p ≤ 0.05) affected the morphological as well as biochemical parameters under normal and P stress conditions. The morphological parameters-length, weight, number of nodes and leaves of Se+P+, Se+P- root and shoot tissue showed significant increase as compared to Se-P+, Se-P-. Similarly various biochemical parameters such as total chlorophyll content, proline, total sugar content and polyphenols of Se+P+, Se+P- increased significantly as compared to Se-P+, Se-P-. The differential protein expression in both Se+P+, Se+P- and Se-P+, Se-P- plants were determined using MALDI-MS/MS. The differentially expressed proteins in Se+P+, Se+P- plants were identified as caffeic acid-3-O-methyltransferase (COMT) and SecA protein (a subunit of Protein Translocan transporter), and are found responsible for lignin synthesis in root cell walls and ATP dependent movement of thylakoid proteins across the membranes in shoot respectively. The differential expression of proteins in plant tissues, validated morphological and biochemical responses such as maintaining membrane integrity, enhanced modifications in cellular metabolism, improved polyphenol activities and expression of defensive proteins against mineral deficiency. CONCLUSIONS: The study provided an understanding of Se application as a potential approach increasing tolerance and yield in crop plants against mineral deficiency.


Assuntos
Phaseolus , Selênio , Selênio/farmacologia , Selênio/metabolismo , Phaseolus/metabolismo , Fósforo/metabolismo , Espectrometria de Massas em Tandem , Proteômica , Sementes/metabolismo , Prolina/metabolismo , Polifenóis/farmacologia , Açúcares/metabolismo
7.
J Mater Chem B ; 11(2): 441-451, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36525248

RESUMO

Fluorescent gold (Au) nanostructures have emerged as burgeoning materials to fabricate nanomaterial assemblies which play a vital role in improving the detection sensitivity and specificity for various biomolecules. In this work, a fluorescence labelled (Rhodamine-B-Isothiocyanate) silica shell with Au metal core (AuNPs@PVP@RITC@SiO2) and a graphene-Au nanostar nanocomposite (rGO-AuNS) are presented as a metal enhanced fluorescence (MEF) material and Raman signal enhancer, respectively. Their composite (AuNPs@PVP@RITC@SiO2NPs/rGO-AuNS) was employed as a dual-mode fluorescence (FL) and surface-enhanced Raman scattering (SERS) nanoprobe for selective and sensitive detection of T-2 toxin. To comprehend the dual-modality, a core-shell nanostructure, AuNPs@PVP@RITC@SiO2, was functionalized with an aptamer (donor) and adsorbed on the surface of rGO-AuNS through electrostatic forces and π-π stacking which act as a FL quencher and SERS signal enhancer. When exposed to T-2 toxin, the apt-AuNPs@PVP@RITC@SiO2NPs move away from the surface of rGO-AuNS, resulting in the restoration of FL and reduction of the SERS signal. There was distinct linearity between the T-2 toxin concentration and the dual FL and SERS signals with lower limits of detection (LOD) of 85 pM and 12 pM, as compared to the previous methods, respectively. The developed FL and SERS aptasensor presented excellent recovery ratio and RSD in wheat and maize, respectively, as compared with the standard ELISA method. The complementary performances of the developed stratagem revealed a high correlation between the FL and SERS sensing modes with exquisite detection properties.


Assuntos
Nanopartículas Metálicas , Toxina T-2 , Ouro/química , Nanopartículas Metálicas/química , Dióxido de Silício/química
8.
Natl J Maxillofac Surg ; 14(3): 413-419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273920

RESUMO

Background: Oral leukoplakia, usually white changes in the oral mucosa, is one of the most common conditions affecting the oral cavity. Oral leukoplakia can occur anywhere in the mouth and is usually asymptomatic. Clinical diagnosis is reliant on visual inspection and manual palpation. It has a global prevalence of 2.6% and a malignant transformation rate of 0.13-34%. In India, OL has a higher prevalence (0.2-5.2%) but a lower a malignant transformation rate (0.13-10%). Methodology: It was a randomized control trial in which study was conducted on clinically diagnosed 300 oral leukoplakia patients. All patients were randomly categorized in three groups of 100 each. Group-A: Patients were given commercially available curcumin 500 mg. daily orally. Group-B: Patients were given 4 mg of oral lycopene daily. Group-C: Patients were treated with 4 mg of lycopene + 500 mg curcumin daily by oral route. After recording the pre-treatment clinical findings, all the participants were evaluated regularly after 30 days, 60 days and 90 days of active treatment and once in a month for another 3 months of post-treatment follow-up and to evaluate concomitant medication, lesion(s), compliance, and adverse events. The clinical response was evaluated by bi-dimensional measurement of the lesions and color photography. Safety assessment measures: Physical examination and laboratory tests were performed at baseline, and every 30 days for 3 months after randomization. Result: Number of participants cured after treatment with oral curcumin was 51%. Participants took lycopene tablets showed 63% cure rate and 72% participants cured after treatment with combination curcumin and lycopene. Conclusion: Results showed that curcumin, lycopene, and a combination of the two are effective in the treatment of oral leukoplakia. When compared, we found that lycopene is a better nutraceutical as compared to curcumin. When both nutraceuticals were given to the participants, they showed better results than single nutraceuticals when the data were analyzed after 90 days of treatment. There is a significant difference in the response of curcumin and combinations of both nutraceuticals, although the difference between lycopene and combinations of curcumin and lycopene is insignificant.

9.
J Coll Physicians Surg Pak ; 32(12): 1640-1643, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36474395

RESUMO

This study aimed to assess the synergistic effects of curcumin with and without strengthening exercises in rheumatoid arthritis (RA). Randomised controlled trial study was conducted from May 2021 to December 2021. Ninety patients were randomised into two groups. Group A was treated with strengthening exercises and curcumin. Group B was given curcumin only. Curcumin dosed at 180 mg/day was given orally to both groups. The treatment regimen was distributed as 3 sessions/week; each session lasted 45 minutes for group A. Serological findings and X-rays of the joints were also done for assessment. Pain, morning stiffness, and functional activities were assessed using the WOMAC and NPRS scale at baseline, 12th week, and 24th week. There was higher significant (p<0.000) reduction in quantitative values of RF, ESR and CRP, WOMAC pain, ADLs, and stiffness readings in group A. This study will project to a screening of newer and more effective interventions to treat RA. Key Words: Curcumin, Rheumatoid arthritis, Strengthening exercises.


Assuntos
Artrite Reumatoide , Curcumina , Humanos , Curcumina/uso terapêutico , Exercício Físico , Atividades Cotidianas , Artrite Reumatoide/tratamento farmacológico , Dor
10.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234756

RESUMO

Background: Type 2 diabetes mellitus (DM2) is a chronic and sometimes fatal condition which affects people all over the world. Nanotherapeutics have shown tremendous potential to combat chronic diseases­including DM2­as they enhance the overall impact of drugs on biological systems. Greenly synthesized silver nanoparticles (AgNPs) from Catharanthus roseus methanolic extract (C. AgNPs) were examined primarily for their cytotoxic and antidiabetic effects. Methods: Characterization of C. AgNPs was performed by UV−vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and atomic force microscopy (AFM). The C. AgNPs were trialed on Vero cell line and afterwards on an animal model (rats). Results: The C. AgNPs showed standard structural and functional characterization as revealed by FTIR and XRD analyses. The zetapotential analysis indicated stability while EDX analysis confirmed the formation of composite capping with Ag metal. The cytotoxic effect (IC50) of C. AgNPs on Vero cell lines was found to be 568 g/mL. The animal model analyses further revealed a significant difference in water intake, food intake, body weight, urine volume, and urine sugar of tested rats after treatment with aqueous extract of C. AgNPs. Moreover, five groups of rats including control and diabetic groups (NC1, PC2, DG1, DG2, and DG3) were investigated for their blood glucose and glycemic control analysis. Conclusions: The C. AgNPs exhibited positive potential on the Vero cell line as well as on experimental rats. The lipid profile in all the diabetic groups (DG1-3) were significantly increased compared with both of the control groups (p < 0.05). The present study revealed the significance of C. AgNPs in nanotherapeutics.


Assuntos
Catharanthus , Diabetes Mellitus Tipo 2 , Nanopartículas Metálicas , Animais , Antibacterianos/farmacologia , Glicemia , Catharanthus/química , Linhagem Celular , Hipoglicemiantes/farmacologia , Lipídeos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Difração de Raios X
11.
Chin Med ; 17(1): 116, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192796

RESUMO

BACKGROUND: As a first-line chemotherapeutic agent, 5-fluorouracil (5-FU) exhibits many side effects, weakening its efficacy in cancer treatment. In this study, we hypothesize that Poria cocos polysaccharides (PCP), a traditional Chinese herbal medicine with various bioactivities and prebiotic effects, might improve the therapeutic effect of 5-FU by restoring the homeostasis of the gut microenvironment and the commensal gut microflora. METHODS: ApcMin/+ mice were employed to evaluate the anti-cancer effect of 5-FU in conjunction with PCP treatment. Body weight and food consumption were monitored weekly. Polyp count was used to assess the anti-cancer effect of PCP and 5-FU. Expressions of mucosal cytokines and gut epithelial junction molecules were measured using qRT-PCR. 16S rRNA gene sequencing of fecal DNAs was used to evaluate the compositional changes of gut microbiota (GM). Transplantation of Lactobacillus johnsonii and Bifidobacterium animalis were performed to verify the prebiotic effects of PCP in improving the efficacy of 5-FU. RESULTS: The results showed that PCP treatment alleviated the weight loss caused by 5-FU treatment and reduced the polyp burden in ApcMin/+ mice. Additionally, PCP treatment eased the cytotoxic effects of 5-FU by reducing the expressions of pro-inflammatory cytokines, increasing the anti-inflammatory cytokines; and significantly improving the gut barriers by enhancing the tight junction proteins and associated adhesion molecules. Furthermore, 16S rRNA gene sequencing data showed that PCP alone or with 5-FU could stimulate the growth of probiotic bacteria (Bacteroides acidifaciens, Bacteroides intestinihominis, Butyricicoccus pullicaecorum, and the genera Lactobacillus, Bifidobacterium, Eubacterium). At the same time, it inhibited the growth of potential pathogens (e.g., Alistipes finegoldii, Alistipes massiliensis, Alistipes putredinis., Citrobacter spp., Desulfovibrio spp., and Desulfovibrio desulfuricans). Moreover, the results showed that transplantation of L.johnsonii and B.animalis effectively reduced the polyp burden in ApcMin/+ mice being treated with 5-FU. CONCLUSION: Our study showed that PCP could effectively improve the anti-cancer effect of 5-FU by attenuating its side effects, modulating intestinal inflammation, improving the gut epithelial barrier, and modulating the gut microbiota of ApcMin/+ mice.

12.
Front Cell Infect Microbiol ; 12: 875513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176581

RESUMO

The trend toward herbal medicine as an alternative treatment for disease medication is increasing worldwide. However, insufficient pharmacologic information is available about the orally taken medicines. Not only herbal medicine, but also Western drugs, when passing through the gastrointestinal tract, interact with trillions of microbes (known as the gut microbiome [GM]) and their enzymes. Gut microbiome enzymes induce massive structural and functional changes to the herbal products and impact the bioavailability and efficacy of the herbal therapeutics. Therefore, traditional Chinese medicine (TCM) researchers extend the horizon of TCM research to the GM to better understand TCM pharmacology and enhance its efficacy and bioavailability. The study investigating the interaction between herbal medicine and gut microbes utilizes the holistic approach, making landmark achievements in the field of disease prognosis and treatment. The effectiveness of TCM is a multipathway modulation, and so is the GM. This review provides an insight into the understanding of a holistic view of TCM and GM interaction. Furthermore, this review briefly describes the mechanism of how the TCM-GM interaction deals with various illnesses.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa
13.
Artigo em Inglês | MEDLINE | ID: mdl-35966728

RESUMO

Background: Since the beginning of civilization, medicinal plants have been used in human healthcare systems. Studies have been conducted worldwide to evaluate their efficacy, and some of the results have triggered the development of plant-based medications. Rural women in Pakistan frequently experience gynaecological disorders due to malnutrition and heavy physical work during pregnancy. Due to the low economic status, the remoteness of the area, and the lack of modern health services, herbal therapy for gynaecological disorders is common among the indigenous tribes of the study area. Methods: Field surveys were carried out from April 2018 to October 2020 to collect data regarding medicinal plants used for different gynaecological disorders. A semistructured questionnaire was used to collect ethnogynaecological data. Results: In total, 67 medicinal plant species belonging to 38 families are being used to treat 26 different gynaecological problems. The herbaceous growth form and the Lamiaceae family were recorded with the maximum number of plant species (42 species and 7 species, respectively). Leaves are the most highly utilized plant part, with 16 species. In the case preparation method, decoction was the dominant method (25 species, 36.76%). The informants reported the maximum number of species for the treatment of irregular menstrual flow as 11 species (15.28%). The highest relative frequency of citation (RFC) value was obtained for Acacia modesta (0.37), and the use value (UV) for Tecomella undulata (0.85). The highest informants' consensus factor (ICF) value (1.0) was obtained for emmenagogue and tonic each after delivery. The highest consensus index (CI%) value was calculated for Acacia modesta (36.92%). The Lamiaceae had the highest family importance value (FIV) (98.46%). Conclusion: This is the first ever quantitative study focusing mainly on ethnogynaecological study conducted in the tribal areas of North Waziristan which highlights the importance of traditional herbal remedies for their basic medical requirements. The results of this study would serve as a baseline for advanced phytochemical and pharmacological screening, as well as conservationists for further studies.

14.
Trop Anim Health Prod ; 54(4): 228, 2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35809139

RESUMO

In the present study, we determined the potential effects of ellagic acid and mesocarp extract of Punica granatum on the productive and reproduction performance of laying hens. Five treatment groups were setup: (1) control group (without ellagic acid), (2) 50 mg of ellagic acid, (3) 100 mg of ellagic acid, (4) 200 mg of ellagic acid, and (5) mesocarp extract of P. granatum. All the groups were investigated for feed intake, body weight, egg production, egg quality, fertility, hatchability, antioxidant status of serum and liver, lipid peroxidation, and antibacterial activities. Egg production, feed intake, and bodyweight were significantly increased (p < 0.05) with 100 mg of ellagic acid and P. granatum extract while no significant effect was observed on albumen and yolk weight, yolk index, yolk color, egg-shape index, and Haugh unit. Both ellagic acid and P. granatum extract significantly improved hatchability while 100 and 200 mg/kg of ellagic acid numerically decreased fertility. Besides, ellagic acid (100 mg/kg) and P. granatum extract significantly decreased malondialdehyde concentration and increased total antioxidant capacity, glutathione peroxidase, and total superoxide dismutase in serum and liver samples of laying hens (p < 0.05). The lipid peroxidation was decreased among the treatment groups, with 100 mg of ellagic acid and P. granatum extract showed the best activity. Moreover, ellagic acid demonstrated strong killing activity against Escherichia coli and Staphylococcus aureus while it was ineffective against methicillin-resistant S. aureus. Our results conclude that ellagic acid and P. granatum promoted egg production, hatchability, and antioxidant enzyme activities of the laying hens.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Punica granatum , Ração Animal/análise , Animais , Antioxidantes/farmacologia , Galinhas , Dieta , Suplementos Nutricionais , Ovos , Ácido Elágico/farmacologia , Feminino , Extratos Vegetais/farmacologia , Reprodução
15.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684321

RESUMO

Rumex vesicarius (L.) is a folklore medicinal herb that has been used for centuries to cure cardiovascular diseases. The present work was carefully designed to ascertain the pharmacological basis for R. vesicarius's therapeutic efficacy in cardiovascular diseases, as well as the underlying mechanism. In the ex vivo investigation, the aqueous-methanolic leaf extract of R. vesicarius was shown to have endothelium-dependent vasorelaxant effects in rabbit aorta tissue preparations, and its hypotensive responses were quantified by pressure and force transducers coupled to the Power Lab Data Acquisition System. Furthermore, when rabbits were subjected to adrenaline-induced myocardial infarction, R. vesicarius demonstrated cardioprotective characteristics. In contrast to the intoxicated group, the myocardial infarction model showed lower ALP, CK-MB, CRP, LDH, ALT, troponin, and AST levels (p > 0.005−0.000), as well as edema, necrosis, apoptosis, inflammatory cell enrolment, and necrosis. R. vesicarius exhibited significant antioxidant activity and delayed noradrenaline-induced platelet aggregation. Its cardioprotective, anticoagulant, and vasorelaxant properties in both investigations (in vivo and ex vivo) are mediated through partial endothelium-dependent, NO and calcium channel blockade mediated vasorelaxation. The minimizing of adrenaline, oxidative stress, and tissue damage demonstrate its therapeutic efficacy in cardiovascular diseases.


Assuntos
Infarto do Miocárdio , Rumex , Animais , Cardiotoxicidade/tratamento farmacológico , Catecolaminas , Epinefrina , Infarto do Miocárdio/tratamento farmacológico , Necrose/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Coelhos , Vasodilatadores/farmacologia
16.
Arch Microbiol ; 204(6): 332, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35583699

RESUMO

Rock microbes are capable to solubilize phosphate present in the rocks.. In this study, we focused on the isolation of phosphate solubilizing bacteria from rocks of Murree, Pakistan. Both endolithic and epilithic bacteria were screened for phosphate solubilization. Three bacterial strains were selected based on halozone formation inNational Botanical Research Institute for phosphate) medium supplemented with TCP (tribasic calcium phosphate). The solubilization index for these bacteria was recorded as 4.29, 4.03 and 3.99. The pH of the medium dropped from 7.0 to 4.0 after 5 days with continuous shaking at 150 rpm, which facilitate the phosphate solubilization. The strains P26, P4 and N27 were identified as Pseudomonas putida strain (KT004381), Pseudomonas grimontii (KT223621) and Alcaligenes faecalis (KT004385). Strain P26 showed maximum phosphate solubilization (367.54 µg/ml), while P4 and N27 showed 321.88 and 291.36 µg/ml after 3 days of incubation. Such inorganic phosphate solubilization could be attributed to the organic acids production by bacteria. The presence of organic acids is determined by high-performance liquid chromatography. Three different types of acids, gluconic, oxalic and malic acid were the dominant acids found in the culture medium. It may be assumed that these bacteria can play a role in weathering of rocks as well. PSB is likely to serve as an efficient biofertilizer, especially in areas deficient in P to increase the overall performance of crops.


Assuntos
Bactérias , Fosfatos , Paquistão , Fosfatos/química , Microbiologia do Solo
17.
PLoS One ; 17(5): e0264460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617167

RESUMO

Interaction of thymol, carvacrol and linalool with fungal lipase and Human Serum Albumin (HSA) have been investigated employing UV-Vis spectroscopy Fluorescence and Circular dichroism spectroscopy (CD) along with docking studies. Thymol, carvacrol and linalool displayed approximately 50% inhibition at 1.5 mmol/litre concentrations using para-nitrophenyl palmitate (pNPP). UV-Vis spectroscopy give evidence of the formation of lipase-linalool, lipase-carvacrol and lipase-thymol complex at the ground state. Three molecules also showed complex formation with HSA at the ground state. Fluorescence spectroscopy shows strong binding of lipase to thymol (Ka of 2.6 x 109 M-1) as compared to carvacrol (4.66 x 107 M-1) and linalool (5.3 x 103 M-1). Number of binding sites showing stoichiometry of association process on lipase is found to be 2.52 (thymol) compared to 2.04 (carvacrol) and 1.12 (linalool). Secondary structure analysis by CD spectroscopy results, following 24 hours incubation at 25°C, with thymol, carvacrol and linalool revealed decrease in negative ellipticity for lipase indicating loss in helical structure as compared with the native protein. The lowering in negative ellipticity was in the order of thymol > carvacrol > linalool. Fluorescence spectra following binding of all three molecules with HSA caused blue shift which suggests the compaction of the HSA structure. Association constant of thymol and HSA is 9.6 x 108 M-1 which along with 'n' value of 2.41 suggests strong association and stable complex formation, association constant for carvacrol and linalool was in range of 107 and 103 respectively. Docking results give further insight into strong binding of thymol, carvacrol and linalool with lipase having free energy of binding as -7.1 kcal/mol, -5.0 kcal/mol and -5.2 kcal/mol respectively. To conclude, fungal lipases can be attractive target for controlling their growth and pathogenicity. Employing UV-Vis, Fluorescence and Circular dichroism spectroscopy we have shown that thymol, carvacrol and linalool strongly bind and disrupt structure of fungal lipase, these three phytochemicals also bind well with HSA. Based on disruption of lipase structure and its binding nature with HSA, we concluded thymol as a best anti-lipase molecule among three molecules tested. Results of Fluorescence and CD spectroscopy taken together suggests that thymol and carvacrol are profound disrupter of lipase structure.


Assuntos
Lipase , Timol , Sítios de Ligação , Dicroísmo Circular , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Albumina Sérica Humana/química , Espectrometria de Fluorescência , Termodinâmica , Timol/farmacologia
18.
Biomed Pharmacother ; 150: 112953, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35430391

RESUMO

BACKGROUND AND PURPOSE: Despite many liver disorders, clinically useful drugs are scarce. Moreover, the available therapies are facing the challenges of efficacy and safety. Alhagi camelorum has been used in folk medicine globally for millennia to treat several ailments. Alhagi camelorum (Ac) is an old plant with a significant therapeutic value throughout Africa, Asia, and Latin America. Our goal was to determine the hepatoprotective activity of Alhagi camelorum against valproic acid induced hepatotoxicity using an animal model. EXPERIMENTAL APPROACH: The animals were segregated in 4-groups (6 male rats each) weighing 250-290 g. Group-1 animals were treated with normal saline, Group-2 animals were treated with VPA at the dose of 500 mg/kg i.p for 14 days consecutively, while Group-3 and 4 were treated with valproic acid (VPA) at the dose of 500 mg/kg i.p for 14 days along with 400 mg/kg and 600 mg/kg of Ac hydroalcoholic extract respectively. Subsequently, blood serum samples and liver tissues were collected for biochemical and histopathological analysis. Phytochemical screening was carried out to screen for phytochemical classes and HPLC analysis was conducted to screen polyphenols. The antioxidant activity was carried by different assays such as DPPH, SOD, NO etc. KEY RESULTS: The administration of Ac showed hepatoprotection at the doses of 400 and 600 mg/kg. Ac significantly reduces the elevated serum levels of liver biomarkers compared to the valproic acid-induced hepatotoxic group. These findings were confirmed with histopathological changes where Ac was capable of reversing the toxic effects of valproic acid on liver cells CONCLUSION: It is concluded that Ac showed significant hepatoprotective effects at different doses in the animal model used in this study.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fabaceae , Animais , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado , Masculino , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar , Ácido Valproico/toxicidade
19.
Mol Biotechnol ; 64(11): 1177-1197, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35488142

RESUMO

Malaria is one of the severe infectious diseases that has victimized about half a civilization billion people each year worldwide. The application of long-lasting insecticides is the main strategy to control malaria; however, a surge in antimalarial drug development is also taking a leading role to break off the infections. Although, recurring drug resistance can compromise the efficiency of both conventional and novel antimalarial medicines. The eradication of malaria is significantly contingent on discovering novel potent agents that are low cost and easy to administer. In this context, plant metabolites inhibit malaria infection progression and might potentially be utilized as an alternative treatment for malaria, such as artemisinin. Advances in genetic engineering technology, especially the advent of molecular farming, have made plants more versatile in producing protein drugs (PDs) to treat infectious diseases, including malaria. These recent developments in genetic modifications have enabled the production of native pharmaceutically active compounds and the accumulation of diverse heterologous proteins such as human antibodies, booster vaccines, and many PDs to treat infectious diseases and genetic disorders. This review will discuss the pivotal role of a plant-based production system that expresses natural antimalarial agents or host protein drugs to cure malaria infections. The potential of these natural and induced compounds will support modern healthcare systems in treating malaria infections, especially in developing countries to mitigate human fatalities.


Assuntos
Antimaláricos , Artemisininas , Doenças Transmissíveis , Inseticidas , Malária , Plantas Medicinais , Vacinas , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico , Humanos , Malária/tratamento farmacológico , Malária/prevenção & controle
20.
Front Vet Sci ; 9: 815294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35400104

RESUMO

Domestic animals play a vital role in the development of human civilization. Plants are utilized as remedies for a variety of domestic animals, in addition to humans. The tribes of North Waziristan are extremely familiar with the therapeutic potential of medicinal plants as ethnoveterinary medicines. The present study was carried out during 2018-2019 to record ethnoveterinary knowledge of the local plants that are being used by the tribal communities of North Waziristan, Khyber Pakhtunkhwa, Pakistan. In all, 56 medicinal plant species belonging to 42 families were identified, which were reported to treat 45 different animal diseases. These included 32 herbs, 12 shrubs, and 12 trees. Among the plant families, Asteraceae contributed the most species (5 spp.), followed by Amaranthaceae (4 spp.), Solanaceae (4 species), and Alliaceae, Araceae, and Lamiaceae (2 spp. each). The most common ethnoveterinary applications were documented for the treatment of blood in urine, bone injury, colic, indigestion, postpartum retention, skin diseases, constipation, increased milk production, mastitis, foot, and mouth diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA