Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 194: 146-160, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36403488

RESUMO

The iron oxide nanoparticles (IONPs) prepared by green synthesis method using Syzigium cumini leaf extract was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD confirmed the crystalline structure of green synthesized NPs measuring around 33 nm while SEM revealed its nearly spherical shape. Rhizobium species recovered from greengram nodules, identified by 16s rRNA gene sequencing as Rhizobium pusense produced 30% more exopolysaccharides (EPS) in basal medium treated with 1000 µg IONPs/ml. Compositional variation in EPS was observed by Fourier-transform infrared spectroscopy (FTIR). There was no reduction in rhizobial viability and no damage to bacterial membrane was observed under SEM and confocal laser scanning microscopy (CLSM), respectively. Effects of IONPs and R. pusense, used alone and in combination on the growth and development of greengram plants varied considerably. Plants grown with IONPs and R. pusence, used alone and in combination, showed a significant increase in seed germination rate, length and dry biomass of plant organs and seed components compared to controls. The IONPs in the presence of rhizobial strain further increased seed germination, plant growth, seed protein and pigments. Greater protein content (442 mg/g) was observed in seeds at 250 mg/kg of IONPs compared to control. Plants raised with mixture of IONPs plus R. pusense had maximum chlorophyll content (39.2 mg/g FW) while proline content decreased by 53% relative to controls. This study confirms that the green synthesis of IONPs from S. cumini leaf possess useful plant growth promoting effects and could be developed as a nano-biofertilizer for optimizing legume production.


Assuntos
Nanopartículas Metálicas , Rhizobium , Extratos Vegetais/química , RNA Ribossômico 16S , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas Metálicas/química
2.
Mater Sci Eng C Mater Biol Appl ; 100: 747-758, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948112

RESUMO

This study demonstrates a simple one-pot green method for biosynthesis of terpenoids encapsulated copper oxide nanoparticles (CuONPs) using aqueous leaf extract of Eucalyptus globulus (ELE), as reducing, dispersing, and stabilizing agent. Indeed, the greater attachment and internalization of ELE-CuONPs in Gram-positive and -negative biofilm producing clinical bacterial isolates validated the hypothesis that terpenoids encapsulated CuONPs are more stable and effective antibacterial and antibiofilm agent vis-à-vis commercially available nano and micro sized analogues. Gas chromatography-mass spectroscopy (GC-MS) analysis of pristine ELE identified 17 types of terpenoids based on their mass-to-charge (m/z) ratios. Amongst them four bioactive terpenoids viz. terpineols, 2,6-octadienal-3,7-dimethyl, benzamidophenyl-4-benzoate and ß-eudesmol were found associated with the CuONPs as ELE-cap, and most likely involved in the nucleation and stabilization of ELE-CuONPs. Further, the Fourier transformed infrared (FTIR) analysis of ELE-CuONPs also implicated other functional biomolecules like proteins, sugars, alkenes, etc. with ELE terpenoids corona. Flow cytometric (FCM) data exhibited significantly enhanced intracellular uptake propensity of terpenoids encapsulated ELE-CuONPs and accumulation of intracellular reactive oxygen species (ROS), which ensued killing of planktonic cells of extended spectrum ß-lactamases (ESßL) producing Escherichia coli-336 (E. coli-336), Pseudomonas aeruginosa-621 (P. aeruginosa-621) and methicillin-resistant Staphylococcus aureus-1 (MRSA-1) clinical isolates compared to the bare surface commercial nano-CuO and bulk sized CuO. The study for the first-time demonstrated the (i) differential bio-nano interface activities due to ELE surface and varied cell wall composition of test bacterial isolates, (ii) antibacterial effect and biofilm inhibition due to disruption of proteins involved in adhesion and biofilm formation triggered by CuONPs induced intracellular oxidative stress, and (iii) indigenous terpenoids-capped bio-inspired CuONPs are more stable and effective antibacterial and antibiofilm agent as compared with commercially available nano-CuO and bulk-CuO.


Assuntos
Cobre/química , Eucalyptus/química , Nanopartículas Metálicas/química , Viabilidade Microbiana , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalização , Escherichia coli/efeitos dos fármacos , Escherichia coli/ultraestrutura , Humanos , Nanopartículas Metálicas/ultraestrutura , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plâncton/citologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA