Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 20(2): e3001541, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167585

RESUMO

Organizing sensory information into coherent perceptual objects is fundamental to everyday perception and communication. In the visual domain, indirect evidence from cortical responses suggests that children with autism spectrum disorder (ASD) have anomalous figure-ground segregation. While auditory processing abnormalities are common in ASD, especially in environments with multiple sound sources, to date, the question of scene segregation in ASD has not been directly investigated in audition. Using magnetoencephalography, we measured cortical responses to unattended (passively experienced) auditory stimuli while parametrically manipulating the degree of temporal coherence that facilitates auditory figure-ground segregation. Results from 21 children with ASD (aged 7-17 years) and 26 age- and IQ-matched typically developing children provide evidence that children with ASD show anomalous growth of cortical neural responses with increasing temporal coherence of the auditory figure. The documented neurophysiological abnormalities did not depend on age, and were reflected both in the response evoked by changes in temporal coherence of the auditory scene and in the associated induced gamma rhythms. Furthermore, the individual neural measures were predictive of diagnosis (83% accuracy) and also correlated with behavioral measures of ASD severity and auditory processing abnormalities. These findings offer new insight into the neural mechanisms underlying auditory perceptual deficits and sensory overload in ASD, and suggest that temporal-coherence-based auditory scene analysis and suprathreshold processing of coherent auditory objects may be atypical in ASD.


Assuntos
Percepção Auditiva/fisiologia , Transtorno do Espectro Autista/fisiopatologia , Sincronização Cortical/fisiologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Adolescente , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/psicologia , Criança , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Tempo de Reação/fisiologia
2.
Biomed Eng Online ; 19(1): 45, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532277

RESUMO

BACKGROUND: Neurofeedback aids volitional control of one's own brain activity using non-invasive recordings of brain activity. The applications of neurofeedback include improvement of cognitive performance and treatment of various psychiatric and neurological disorders. During real-time magnetoencephalography (rt-MEG), sensor-level or source-localized brain activity is measured and transformed into a visual feedback cue to the subject. Recent real-time fMRI (rt-fMRI) neurofeedback studies have used pattern recognition techniques to decode and train a brain state to link brain activities and cognitive behaviors. Here, we utilize the real-time decoding technique similar to ones employed in rt-fMRI to analyze time-varying rt-MEG signals. RESULTS: We developed a novel rt-MEG method, state-based neurofeedback (sb-NFB), to decode a time-varying brain state, a state signal, from which timings are extracted for neurofeedback training. The approach is entirely data-driven: it uses sensor-level oscillatory activity to find relevant features that best separate the targeted brain states. In a psychophysical task of spatial attention switching, we trained five young, healthy subjects using the sb-NFB method to decrease the time necessary for switch spatial attention from one visual hemifield to the other (referred to as switch time). Training resulted in a decrease in switch time with training. We saw that the activity targeted by the training involved proportional changes in alpha and beta-band oscillations, in sensors at the occipital and parietal regions. We also found that the state signal that encodes whether subjects attend to the left or right visual field effectively switches consistently with the task. CONCLUSION: We demonstrated the use of the sb-NFB method when the subject learns to increase the speed of shifting covert spatial attention from one visual field to the other. The sb-NFB method can target timing features that would otherwise also include extraneous features such as visual detection and motor response in a simple reaction time task.


Assuntos
Atenção/fisiologia , Magnetoencefalografia , Neurorretroalimentação , Encéfalo/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Adulto Jovem
3.
Brain Topogr ; 33(4): 477-488, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32441009

RESUMO

Auditory attention allows us to focus on relevant target sounds in the acoustic environment while maintaining the capability to orient to unpredictable (novel) sound changes. An open question is whether orienting to expected vs. unexpected auditory events are governed by anatomically distinct attention pathways, respectively, or by differing communication patterns within a common system. To address this question, we applied a recently developed PeSCAR analysis method to evaluate spectrotemporal functional connectivity patterns across subregions of broader cortical regions of interest (ROIs) to analyze magnetoencephalography data obtained during a cued auditory attention task. Subjects were instructed to detect a predictable harmonic target sound embedded among standard tones in one ear and to ignore the standard tones and occasional unpredictable novel sounds presented in the opposite ear. Phase coherence of estimated source activity was calculated between subregions of superior temporal, frontal, inferior parietal, and superior parietal cortex ROIs. Functional connectivity was stronger in response to target than novel stimuli between left superior temporal and left parietal ROIs and between left frontal and right parietal ROIs, with the largest effects observed in the beta band (15-35 Hz). In contrast, functional connectivity was stronger in response to novel than target stimuli in inter-hemispheric connections between left and right frontal ROIs, observed in early time windows in the alpha band (8-12 Hz). Our findings suggest that auditory processing of expected target vs. unexpected novel sounds involves different spatially, temporally, and spectrally distributed oscillatory connectivity patterns across temporal, parietal, and frontal areas.


Assuntos
Atenção , Córtex Auditivo , Percepção Auditiva , Magnetoencefalografia , Estimulação Acústica , Mapeamento Encefálico , Feminino , Humanos , Lobo Parietal
4.
Brain Topogr ; 32(2): 215-228, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604048

RESUMO

Magnetoencephalography (MEG) and electroencephalography (EEG) use non-invasive sensors to detect neural currents. Since the contribution of superficial neural sources to the measured M/EEG signals are orders-of-magnitude stronger than the contribution of subcortical sources, most MEG and EEG studies have focused on cortical activity. Subcortical structures, however, are centrally involved in both healthy brain function as well as in many neurological disorders such as Alzheimer's disease and Parkinson's disease. In this paper, we present a method that can separate and suppress the cortical signals while preserving the subcortical contributions to the M/EEG data. The resulting signal subspace of the data mainly originates from subcortical structures. Our method works by utilizing short-baseline planar gradiometers with short-sighted sensitivity distributions as reference sensors for cortical activity. Since the method is completely data-driven, forward and inverse modeling are not required. In this study, we use simulations and auditory steady state response experiments in a human subject to demonstrate that the method can remove the cortical signals while sparing the subcortical signals. We also test our method on MEG data recorded in an essential tremor patient with a deep brain stimulation implant and show how it can be used to reduce the DBS artifact in the MEG data by ~ 99.9% without affecting low frequency brain rhythms.


Assuntos
Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Estimulação Acústica , Algoritmos , Artefatos , Simulação por Computador , Estimulação Encefálica Profunda , Eletrodos Implantados , Tremor Essencial/fisiopatologia , Tremor Essencial/terapia , Potenciais Evocados Auditivos/fisiologia , Humanos , Modelos Neurológicos , Razão Sinal-Ruído
5.
J Neurosci ; 34(11): 3924-36, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24623770

RESUMO

Placebo analgesia is an indicator of how efficiently the brain translates psychological signals conveyed by a treatment procedure into pain relief. It has been demonstrated that functional connectivity between distributed brain regions predicts placebo analgesia in chronic back pain patients. Greater network efficiency in baseline brain networks may allow better information transfer and facilitate adaptive physiological responses to psychological aspects of treatment. Here, we theorized that topological network alignments in resting state scans predict psychologically conditioned analgesic responses to acupuncture treatment in chronic knee osteoarthritis pain patients (n = 45). Analgesia was induced by building positive expectations toward acupuncture treatment with verbal suggestion and heat pain conditioning on a test site of the arm. This procedure induced significantly more analgesia after sham or real acupuncture on the test site than in a control site. The psychologically conditioned analgesia was invariant to sham versus real treatment. Efficiency of information transfer within local networks calculated with graph-theoretic measures (local efficiency and clustering coefficients) significantly predicted conditioned analgesia. Clustering coefficients in regions associated with memory, motivation, and pain modulation were closely involved in predicting analgesia. Moreover, women showed higher clustering coefficients and marginally greater pain reduction than men. Overall, analgesic response to placebo cues can be predicted from a priori resting state data by observing local network topology. Such low-cost synchronizations may represent preparatory resources that facilitate subsequent performance of brain circuits in responding to adaptive environmental cues. This suggests a potential utility of network measures in predicting placebo response for clinical use.


Assuntos
Analgesia por Acupuntura/métodos , Artralgia/psicologia , Dor Crônica/psicologia , Conectoma/psicologia , Osteoartrite do Joelho/complicações , Adaptação Psicológica/fisiologia , Artralgia/etiologia , Artralgia/fisiopatologia , Dor Crônica/etiologia , Dor Crônica/fisiopatologia , Condicionamento Psicológico/fisiologia , Conectoma/métodos , Sincronização Cortical/fisiologia , Sinais (Psicologia) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Efeito Placebo , Valor Preditivo dos Testes , Descanso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA