Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Biomol Struct Dyn ; : 1-10, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878080

RESUMO

Tuberculosis is one of the most dreadful infectious diseases, afflicting global populations with anguish. With the emergence of multi-drug resistant strains of mycobacteria, the imperative for new anti-tuberculosis drugs has grown exponentially. Thus, the current study delves into evaluating the impact of Perovskia abrotanoides and its active metabolites-namely, rosmarinic acid and its derivatives-against strains of Mycobacterium tuberculosis (Mtb). Through the use of the CRI assay, the antimycobacterial potential of the high-altitude medicinal plant P. abrotanoides was gauged, while docking and molecular dynamics simulations unveiled plausible targets. Of these, the peak antimycobacterial effectiveness was observed in the P. abrotanoides ethyl acetate extract with 125 µg/mL as minimum inhibitory concentration against various strains of M. tuberculosis, encompassing H37Rv and strains resistant to multiple drugs. Following bioassay-guided fractionation and isolation, rosmarinic acid and rosmarinic acid methyl ester emerged as potent molecules against H37Rv and multidrug-resistant M. tuberculosis strains; minimum inhibitory concentration ranging from 15 to 32 µg/mL. Additionally, out of 22 targets explored, Mtb lipoamide dehydrogenase (PDB: 3II4) and Rv2623 (PDB: 3CIS) were forecasted as potential Mtb targets for rosmarinic acid and rosmarinic acid methyl ester, respectively, a supposition further affirmed by molecular simulations (100 ns). The stability of both complexes throughout the simulation was measured by protein backbone root-mean-square deviation, substantiating their roles as respective targets for antimycobacterial activities.Communicated by Ramaswamy H. Sarma.

3.
J Ethnopharmacol ; 316: 116686, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279812

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Feronia elephantum corr. (synonym: Feronia limonia, Murraya odorata, Schinus Limonia, or Limonia acidissima; common names: Bela, Kath, Billin, and Kavitha), belonging to the family Rutaceae has been known for clinical conditions such as pruritus, diarrhea, impotence, dysentery, heart diseases, and is also used as a liver tonic. However, the effect of the fruit pulp of F. elephantum on insulin resistance has yet not been reported. AIM OF THE STUDY: The present study aimed to assess the effect of hydroalcoholic extract/fraction of F. elephantum fruit pulp on fasting blood glucose, oral glucose tolerance test, and glucose uptake in fructose-induced insulin-resistant rats and predict the gene-set enrichment of lead hits of F. elephantum with targets related to insulin resistance. MATERIAL AND METHODS: System biology tools were used to predict the best category of fraction and propose a possible mechanism. Docking was carried out with adiponectin and its receptor (hub genes). Further, fructose supplementation was used for the induction of insulin resistance. Later, three doses of extract (400, 200, and 100 mg/kg) and a flavonoid-rich fraction (63 mg/kg) were used for treatment along with metformin as standard. The physical parameters like body weight, food intake, and water intake were measured along with oral glucose tolerance test, insulin tolerance test, glycogen content in skeletal muscles and liver, glucose uptake by rat hemidiaphragm, lipid profiles, anti-oxidant biomarkers, and histology of the liver and adipose tissue. RESULTS: Network pharmacology reflected the potency of F. elephantum to regulate adiponectin which may promote the reversal of insulin resistance and inhibit α-amylase and α-glucosidase. Vitexin was predicted to modulate the most genes associated with diabetes mellitus. Further, F. elephantum ameliorated the exogenous glucose clearance, promoted insulin sensitivity, reduced oxidative stress, and improved glucose and lipid metabolism. HPLC profiling revealed the presence of apigenin and quercetin in the extract for the first time. CONCLUSION: The fruit pulp of F. elephantum reverses insulin resistance by an increase in glucose uptake and a decrease in gluconeogenesis which may be due to the regulation of multiple proteins via multiple bio-actives.


Assuntos
Resistência à Insulina , Rutaceae , Masculino , Ratos , Animais , Insulina , Resistência à Insulina/fisiologia , Frutose , Adiponectina , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Glucose , Glicemia
4.
J Biomol Struct Dyn ; 41(24): 15400-15410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36914227

RESUMO

In view of the ethno medicinal use of Enhydra fluctuans for the treatment of kidney stones; the present study aimed to elucidate the molecular mechanisms involved in the amelioration of nephrolithiasis through a network pharmacology approach. The phytoconstituents were queried in DIGEP-Pred to identify the regulated proteins. The modulated proteins were then enriched in the STRING to predict the protein-protein interactions and the probably regulated pathways were traced in the Kyoto Encyclopedia of Genes and Genomes. Further, the network was constructed using Cytoscape ver 3.5.1. Results showed that ß-carotene was found to be regulating maximum targets i.e. 26. In addition, 63 proteins were triggered by the components in which the vitamin D receptor was targeted by the maximum phytoconstituents i.e. 16. The enrichment analysis identified the regulation of 67 pathways in which fluid shear stress and atherosclerosis-associated pathways (KEGG entry hsa05418) regulated ten genes. Further, protein kinase C-α was traced in 23 different pathways. In addition, the majority of the regulated genes were identified from the extracellular space via the modulation of 43 genes. Also, nuclear receptor activity had the maximum molecular function via the regulation of 7 genes. Likewise, the response to organic substance was predicted to trigger the top genes i.e. 43. In contrast, Stigmasterol, Baicalein-7-o-glucoside, and Kauran-16-ol were found to have a high affinity to bind with the VDR receptor confirmed by the molecular modelling and the dynamics. Hence, the study elucidated the probable molecular mechanisms of E. fluctuans in managing nephrolithiasis and identified the lead molecules, their targets, and possible pathways.Communicated by Ramaswamy H. Sarma.


Assuntos
Asteraceae , Medicamentos de Ervas Chinesas , Nefrolitíase , Farmacologia em Rede , Nefrolitíase/tratamento farmacológico , Nefrolitíase/genética , Espaço Extracelular , Simulação de Acoplamento Molecular
5.
J Ethnopharmacol ; 304: 116064, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36549367

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Processing cow ghee (clarified butterfat) with therapeutic herbs, i.e. ghrita, is recognized for augmenting the therapeutic efficacy of plant materials. Ashwagandha ghrita (AG) is an effective Ayurvedic formulation consisting of Indian ginseng, i.e., Withania somnifera (L.) Dunal, the main constituent used to treat infertility, weakness, gynaecological disorders, and general debility. OBJECTIVES: The present investigation was undertaken to corroborate the ethnopharmacological claim of AG as 'Vajikarana Rasayana' for its aphrodisiac potential using bioinformatics (in-silico) and experimental (in-vitro and in-vivo) approaches. METHODS: AG was formulated as per the methods reported in Ayurved sarsangraha. AG was further subjected to HPLC, GCMS analysis, and biological (acute toxicity and aphrodisiac) assessment per the standard procedures. Thirty-eight bioactives of Indian ginseng were subjected to computational studies (molecular docking and network pharmacology) to confirm the plausible mechanism. RESULTS: AG was found to be safe up to 2000 mg/kg body wt., and it showed dose-dependent upsurge (p < 0.01 and p < 0.05, wherever necessary) in mount and intromission frequency, genital grooming, and anogenital sniffing at 150 and 300 mg/kg body weight suggesting aphrodisiac activity. In-vitro studies demonstrated significant relaxation of the Corpus Cavernosal Smooth Muscle at all concentrations in a dose-dependent manner. Furthermore, the results of molecular modelling studies were in agreement with the biological activity and showed interaction with phosphodiesterase-5 as a possible target. CONCLUSION: AG exhibited an aphrodisiac effect and substantiated the traditional claim of Indian ginseng-based ghrita formulation as 'Vajikarana Rasayana'.


Assuntos
Afrodisíacos , Withania , Animais , Feminino , Bovinos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
6.
J Ayurveda Integr Med ; 13(3): 100599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35863084

RESUMO

BACKGROUND: Carboplatin is one of the common chemotherapeutic agents in the management of various malignant conditions. Myelosuppression remains one of the major adverse effects of it that leads to compromised quality of life and can procrastinate or cease the chemotherapy regimen. Increasing shreds of evidence suggest the role of Complementary and alternate medicine in palliative cancer care. Ayurveda has prescribed Dooshivishari Agada (DVA) as an anti-dote for similar conditions mentioned above which arise out of sub-lethal toxic substances called Dooshivisha (DV). OBJECTIVE: The present study was carried out to evaluate the role of DVA in myelosuppression among rats. METHOD: Male Wistar rats weighing 250-275 g were divided into three groups, Group I was administered normal saline and acted as Normal control. Group II and III received a single dose of carboplatin (60 mg/kg through the tail vein) on day one and acted as disease control. Group III received experimental drug DVA 256 mg/kg orally for the next 18 days. Animals were bled on days 0, 3, 6, 9, 12, 15, 18 for hematological analysis. RESULTS: DVA prolonged the nadir time for Hb, RBC, and WBC counts from day 9 to day 12 when compared to the carboplatin group. In terms of Platelet count, there was no significant difference over carboplatin. Group III showed a significant increase in Total reticulocyte count in comparison to group II. CONCLUSION: Present study showed that DVA may help in delaying the myelosuppression which needs further evaluation.

7.
PLoS One ; 17(4): e0259757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421091

RESUMO

Theobroma cacao L. is a commercially important food/beverage and is used as traditional medicine worldwide against a variety of ailments. In the present study, computational biology approaches were implemented to elucidate the possible role of cocoa in cancer therapy. Bioactives of cocoa were retrieved from the PubChem database and queried for targets involved in cancer pathogenesis using BindingDB (similarity index ≥0.7). Later, the protein-protein interactions network was investigated using STRING and compound-protein via Cytoscape. In addition, intermolecular interactions were investigated via molecular docking. Also, the stability of the representative complex Hirsutrin-epidermal growth factor receptor (EGFR) complex was explored using molecular dynamics simulations. Crude extract metabolite profile was carried out by LC-MS. Further, anti-oxidant and cytotoxicity studies were performed in Chinese hamster ovary (normal) and Ehrlich ascites carcinoma (cancer) cell lines. Herein, the gene set enrichment and network analysis revealed 34 bioactives in cocoa targeting 50 proteins regulating 21 pathways involved in cancer and oxidative stress in humans. EGFR scored the highest edge count amongst 50 targets modulating 21 key pathways. Hence, it was selected as a promising anticancer target in this study. Structural refinement of EGFR was performed via all-atom molecular dynamics simulations in explicit solvent. A complex EGFR-Hirsutrin showed the least binding energy (-7.2 kcal/mol) and conserved non-bonded contacts with binding pocket residues. A stable complex formation of EGFR-Hirsutrin was observed during 100 ns MD simulation. In vitro studies corroborated antioxidant activity for cocoa extract and showed a significantly higher cytotoxic effect on cancer cells compared to normal cells. Our study virtually predicts anti-cancer activity for cocoa affected by hirsutrin inhibiting EGFR. Further wet-lab studies are needed to establish cocoa extract against cancer and oxidative stress.


Assuntos
Cacau , Neoplasias , Animais , Antioxidantes/metabolismo , Células CHO , Cacau/química , Sobrevivência Celular , Cricetinae , Cricetulus , Receptores ErbB/metabolismo , Humanos , Técnicas In Vitro , Simulação de Acoplamento Molecular , Farmacologia em Rede
8.
Comput Biol Med ; 142: 105223, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033877

RESUMO

Silymarin is used as a hepatoprotective agent since ancient times which could be via its potent anti-oxidant effect. However, the mode of silymarin for the hepatoprotective effect has not been established with the targets involved in hepatic cirrhosis. The present study investigated the multiple interactions of the flavonolignans from Silybum marianum with targets involved in hepatic cirrhosis using a series of system biology approaches. Chemo-informative tools and databases i.e. DIGEP-Pred and DisGeNET were used to predict the targets of flavonolignans and proteins involved in liver cirrhosis respectively. Further, STRING was used to enrich the protein-protein interaction for the flavonolignans-modulated targets. Similarly, molecular docking was performed using AutoDock Vina. Additionally, molecular dynamics simulation and MM-PBSA calculations were carried out for the lead-hit complexes by GROMACS. Thirteen flavonolignans were identified from S. marianum, in which silymonin exhibited the highest drug-likeness score i.e. 1.09. Similarly, CTNNB1 was found to be regulated by the 12 different flavonolignans and was majorly expressed within the compound(s)-protein(s)-pathway(s) network. Further, silymonin had the highest binding affinity; binding energy -9.2 kcal/mol with the CTNNB1 and formed very stable hydrogen bond interactions with Arg332, Ser336, Lys371, and Arg475 throughout 100 ns molecular dynamic production run. The binding free energy of CTNNB1-silymonin complex was found to be -15.83 ± 2.71 kcal/mol. The hepatoprotective property of S. marianum may be due to the presence of silymonin and silychristin; this could majorly modulate CTNNB1, HMOX1, and CASP8 in combination with other flavonolignans. Our findings further suggest designing the in-vitro and in-vivo studies to validate the interaction of flavonolignans with identified targets to strengthen present findings of S. marianum as a hepatoprotective..


Assuntos
Silimarina , Biologia , Silybum marianum/química , Silybum marianum/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais , Silimarina/química , Silimarina/metabolismo , Silimarina/farmacologia
9.
J Ayurveda Integr Med ; 13(1): 100374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33250601

RESUMO

The Ministry of AYUSH recommended the use of a decoction of the mixture of Ocimum tenuiflorum, Cinnamomum verum, Piper nigrum, Zingiber officinale, and Vitis vinifera as a preventive measure by boosting the immunity against the severity of infection caused by a novel coronavirus (COVID-19). The present study aimed to identify the probable modulated pathways by the combined action of AYUSH recommended herbal tea and golden milk formulation as an immune booster against COVID-19. Reported phytoconstituents of all the medicinal plants were retrieved from the ChEBI database, and their targets were predicted using DIGEP-Pred. STRING database and Cytoscape were used to predict the protein-protein interaction and construct the network, respectively. Likewise, MolSoft and admet SAR2.0 were used to predict the druglikeness score and ADMET profile of phytoconstituents. The study identified the modulation of HIF-1, p53, PI3K-Akt, MAPK, cAMP, Ras, Wnt, NF-kappa B, IL-17, TNF, and cGMP-PKG signaling pathways to boost the immune system. Further, multiple pathways were also identified which are involved in the regulation of pathogenesis of the multiple infections and non-infectious diseases due to the lower immune system. Results indicated that the recommended herbal formulation not only modulated the pathways involved in boosting the immunity but also modulated the multiple pathways that are contributing to the progression of multiple disease pathogenesis which would add the beneficial effect in the co-morbid patients of hypertension and diabetes. The study provides the scientific documentation of the role of the Ayurvedic formulation to combat COVID-19.

10.
J Biomol Struct Dyn ; 40(12): 5295-5308, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33459174

RESUMO

Traditionally, Withania somnifera is widely used as an immune booster, anti-viral, and for multiple medicinal purposes. The present study investigated the withanolides as an immune booster and anti-viral agents against the coronavirus-19. Withanolides from Withania somnifera were retrieved from the open-source database, their targets were predicted using DIGEP-Pred, and the protein-protein interaction was evaluated. The drug-likeness score and intestinal absorptivity of each compound were also predicted. The network of compounds, proteins, and modulated pathways was constructed using Cytoscape, and docking was performed using autodock4.0, and selected protein-ligand complexes were subjected to 100 ns Molecular Dynamics simulations. The molecular dynamics trajectories were subjected to free energy calculation by the MM-GBSA method. Withanolide_Q was predicted to modulate the highest number of proteins, showed human intestinal absorption, and was predicted for the highest drug-likeness score. Similarly, combined network interaction identified Withanolide_Q to target the highest number of proteins; RAC1 was majorly targeted, and fluid shear stress and atherosclerosis associated pathway were chiefly regulated. Similarly, Withanolide_D and Withanolide_G were predicted to have a better binding affinity with PLpro, Withanolide_M with 3CLpro, and Withanolide_M with spike protein based on binding energy and number of hydrogen bond interactions. MD studies suggested Withanoside_I with the highest binding free energy (ΔGbind-31.56 kcal/mol) as the most promising inhibitor. Among multiple withanolides from W. somnifera, Withanolide_D, Withanolide_G, Withanolide_M, and Withanolide_Q were predicted as the lead hits based on drug-likeness score, modulated proteins, and docking score to boost the immune system and inhibit the COVID-19 infection, which could primarily act against COVID-19. HighlightsWithanolides are immunity boosters.Withanolides are a group of bio-actives with potential anti-viral properties.Withanolide_G, Withanolide_I, and Withanolide_M from Withania somnifera showed the highest binding affinity with PLpro, 3CLpro, and spike protein, respectively.Withanolides from Withania somnifera holds promising anti-viral efficacy against COVID-19.Communicated by Vsevolod Makeev.


Assuntos
Tratamento Farmacológico da COVID-19 , Withania , Vitanolídeos , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Withania/química , Withania/metabolismo , Vitanolídeos/química , Vitanolídeos/metabolismo , Vitanolídeos/farmacologia
11.
J Ethnopharmacol ; 284: 114761, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34678414

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bark of Ficus benghalensis L. (family: Moraceae), commonly known as Banyan is recorded as Nyagrodha in Ayurvedic Pharmacopeia of India to manage burning sensation, obesity, diabetes, bleeding disorders, thirst, skin diseases, wounds, and dysmenorrhoea. However, the effect of F. benghalensis bark over glycolysis, gluconeogenesis, and appetite regulation in insulin-resistant pathogenesis has not been reported yet. AIM OF THE STUDY: The present study aimed to investigate the effect of hydroalcoholic extract of F. benghalensis bark in gluconeogenesis, glycolysis, and appetite regulation in fructose-induced insulin resistance in experimental rats. MATERIALS AND METHODS: Male Wister rats were supplemented with fructose in drinking water (10% w/v for 42 days and 20% w/v for next 12 days; a total of 54 days); insulin resistance was confirmed via the elevated area under the curve of the glucose during oral glucose tolerance test after 54 days and was subjected with extract treatment for next 30 days. After 30 days of treatment, animals were fasted to perform oral glucose and insulin tolerance test to estimate glucose and insulin levels. The blood sample was collected for biochemical estimation and the liver homogenate was prepared to estimate hepatic enzymes and enzymatic and non-enzymatic anti-oxidant biomarkers followed by histopathological evaluation. Also, glycogen content was quantified in gastrocnemius muscle and liver homogenates. Further, reported bioactives from the F. benghalensis were retrieved from the ChEBI database and docked against hexokinase, phosphofructokinase, glucose-6-phosphatase, lactate dehydrogenase, and fructose-1,6-biphosphatase to identify the probable lead hits against the enzymes involved in gluconeogenesis. RESULTS: Treatment with the F. benghalensis bark extract significantly increased the body weight and food intake and significantly decreased fructose supplemented water intake. Further, treatment with extract significantly increased the exogenous glucose clearance and well responded to the exogenous insulin. Further, extract treatment improved lipid metabolism, ameliorated plasma leptin, and multiple enzymatic and non-enzymatic antioxidant biomarkers. Likewise, it also improved gluconeogenesis mediated pathogenesis of non-alcoholic fatty liver injury. Additionally, molecular docking also identified mucusisoflavone A and B as lead hits in downregulating gluconeogenesis. CONCLUSION: Hydroalcoholic extract of F. benghalensis bark may prevent insulin resistance by downregulating gluconeogenesis and improving the appetite in fructose-induced insulin-resistant rats.


Assuntos
Ficus/química , Frutose/toxicidade , Casca de Planta/química , Extratos Vegetais/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Resistência à Insulina , Masculino , Extratos Vegetais/química , Ratos , Ratos Wistar
12.
Comput Biol Med ; 141: 105035, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34802711

RESUMO

Cyperus rotundus L. is used to treat multiple clinical conditions like inflammation, diarrhea, pyrosis, and metabolic disorders including diabetes and obesity. The present study aimed to predict the interaction of reported bioactives from Cyperus rotundus against obesity via network pharmacology and to evaluate the efficacy of hydroalcoholic extract of Cyperus rotundus against the olanzapine-induced weight gain and metabolic disturbances in experimental animals. Reported phytochemicals of Cyperus rotundus were retrieved from the open-source database(s) and published literature and their targets were predicted using SwissTargetPrediction, enriched in STRING, and bioactives-proteins-pathways network was constructed using Cytoscape. Further, the hydroalcoholic extract of Cyperus rotundus (100, 200, and 400 mg/kg/day, p.o.) was co-administered with olanzapine (2 mg/kg, i.p.) for 21 days in Sprague Dawley rats. During treatment, body weight and food intake were recorded; after the successful completion of 21 days of treatment, animals were fasted to perform oral glucose and insulin tolerance tests. Further, the animals were euthanized; blood and abdominal fat were collected for lipid profiling and histopathological examination respectively. Herein, network pharmacology predicted neuroactive ligand-receptor interaction as a primarily modulated pathway and protein tyrosine phosphatase 1b as a majorly triggered protein via the combined action of bioactives. Further, Cyperus rotundus significantly reversed weight gain, cumulative food intake, ameliorated the lipid and glucose metabolism, and promoted energy expenditure.


Assuntos
Cyperus , Animais , Olanzapina , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Aumento de Peso
13.
3 Biotech ; 11(5): 238, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33968581

RESUMO

A total of 21 different bioactives were identified from F. benghalensis in which 3 molecules, i.e., apigenin, 3',4',5,7-tetrahydroxy-3-methoxyflavone, and kaempferol were predicted to target the highest number of proteins involved in diabetic pathogenesis in which protein tyrosine phosphatase 1b was primarily targeted. Similarly, a docking study identified ursolic acid to have the highest binding affinity with protein tyrosine phosphatase 1b. The combined synergic network analysis identified PI3K/Akt signaling pathway to be primarily modulated followed by the calcium signaling pathway. Similarly, in oral glucose tolerance test, we observed the efficacy of hydroalcoholic extract of F. benghalensis to lower the total area under the curve of glucose and increase total area under curve of insulin for 2 hours. Likewise, hydroalcoholic extract reversed the altered homeostatic hepatic enzymes after 28 days of treatments. Similarly, the extract also enhanced the antioxidant enzymes level like catalase and superoxide dismutase in liver homogenate. In summary, hydroalcoholic extract of F. benghalensis bark may act as an antidiabetic agent by enhancing the glycolysis, decreasing gluconeogenesis, promoting glucose uptake, enhancing insulin secretion, and maintaining pancreatic ß-cell mass via PI3K/Akt signaling pathway and downregulating the function of  protein tyrosine phosphatase 1b. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02788-7.

14.
Mol Divers ; 25(3): 1889-1904, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33492566

RESUMO

Saikosaponins are major biologically active triterpenoids, usually as glucosides, isolated from Traditional Chinese Medicines (TCM) such as Bupleurum spp., Heteromorpha spp., and Scrophularia scorodonia with their antiviral and immunomodulatory potential. This investigation presents molecular docking, molecular dynamics simulation, and free energy calculation studies of saikosaponins as adjuvant therapy in the treatment for COVID19. Molecular docking studies for 23 saikosaponins on the crystal structures of the extracellular domains of human lnterleukin-6 receptor (IL6), human Janus Kinase-3 (JAK3), and dehydrogenase domain of Cylindrospermum stagnale NADPH-oxidase 5 (NOX5) were performed, and selected protein-ligand complexes were subjected to 100 ns molecular dynamics simulations. The molecular dynamics trajectories were subjected to free energy calculation by the MM-GBSA method. Molecular docking and molecular dynamics simulation studies revealed that IL6 in complex with Saikosaponin_U and Saikosaponin_V, JAK3 in complex with Saikosaponin_B4 and Saikosaponin_I, and NOX5 in complex with Saikosaponin_BK1 and Saikosaponin_C have good docking and molecular dynamics profiles. However, the Janus Kinase-3 is the best interacting partner for the saikosaponin compounds. The network pharmacology analysis suggests saikosaponins interact with the proteins CAT Gene CAT (Catalase) and Checkpoint kinase 1 (CHEK1); both of these enzymes play a major role in cell homeostasis and DNA damage during infection, suggesting a possible improvement in immune response toward COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Humanos , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Domínios Proteicos , Saponinas/metabolismo , Saponinas/uso terapêutico
15.
RSC Adv ; 11(62): 39362-39375, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-35492478

RESUMO

Cassia glauca is reported as anti-diabetic medicinal plant and is also used as an ethnomedicine. However, its mode of action as an anti-diabetic agent has not been clearly elucidated. Hence, the present study investigated the probable mechanism of action of C. glauca to manage diabetes mellitus via network pharmacology and molecular docking and simulations studies. The reported bioactives from C. glauca were retrieved from an open-source database, i.e. ChEBI, and their targets were predicted using SwissTargetPrediction. The proteins involved in the pathogenesis of diabetes were identified from the therapeutic target database. The targets involved in diabetes were enriched in STRING, and the pathways involved in diabetes were identified concerning the KEGG. Cytoscape was used to construct the network among bioactives, proteins, and probably regulated pathways, which were analyzed based on edge count. Similarly, molecular docking was performed using the Glide module of the Schrodinger suite against majorly targeted proteins with their respective ligands. Additionally, the drug-likeness score and ADMET profile of the individual bioactives were predicted using MolSoft and admetSAR2.0 respectively. The stability of these complexes were further studied via molecular dynamics simulations and binding energy calculations. Twenty-three bio-actives were retrieved from the ChEBI database in which cassiarin B was predicted to modulate the highest number of proteins involved in diabetes mellitus. Similarly, GO analysis identified the PI3K-Akt signaling pathway to be primarily regulated by modulating the highest number of gene. Likewise, aldose reductase (AKR1B1) was majorly targeted via the bioactives of C. glauca. Similarly, docking study revealed methyl-3,5-di-O-caffeoylquinate (docking score -9.209) to possess the highest binding affinity with AKR1B1. Additionally, drug-likeness prediction identified cassiaoccidentalin B to possess the highest drug-likeness score, i.e. 0.84. The molecular dynamics simulations and the MMGBSA indicate high stability and greater binding energy for the methyl-3,5-di-O-caffeoylquinate (ΔG bind = -40.33 ± 6.69 kcal mol-1) with AKR1B1, thus complementing results from other experiments. The study identified cassiarin B, cassiaoccidentalin B, and cinnamtannin A2 as lead hits for the anti-diabetic activity of C. glauca. Further, the PI3K-Akt and AKR1B1 were traced as majorly modulated pathway and target, respectively.

16.
J Integr Med ; 19(1): 66-77, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33071211

RESUMO

OBJECTIVE: Duranta repens is reported to contain a wide array of secondary metabolites, including α-amylase and α-glucosidase inhibitors, and - has potent antioxidant activity. The present study evaluated the network pharmacology of D. repens (whole plant) with targets related to diabetes mellitus and assessed its outcome by evaluating the effects of the hydroalcoholic extract of D. repens in streptozotocin-nicotinamide-induced diabetes mellitus in rats. METHODS: Phytoconstituents of D. repens were retrieved from an open-source database and published literature, and their targets were predicted for diabetes mellitus using BindingDB and the therapeutic target database. Protein-protein interaction was predicted using STRING, and pathways involved in diabetes mellitus were identified using the Kyoto Encyclopedia of Genes and Genomes pathway browser. Druglikeness, ADMET profile (absorption, distribution, metabolism, excretion and toxicity) and cytotoxicity of compounds modulating proteins involved in diabetes were predicted using MolSoft, admetSAR2.0 and CLC-Pred, respectively. The interaction network among phytoconstituents, proteins and pathways was constructed using Cytoscape, and the docking study was performed using AutoDock4.0. The hydroalcoholic extract of D. repens was evaluated using streptozotocin-nicotinamide-induced diabetes mellitus animal model for 28 d, followed by an oral glucose tolerance test. At the end of the study, biochemical parameters like glycogen content, hepatic enzymes, antioxidant biomarkers and lipid profiles were quantified. Further, the liver and pancreas were collected for a histopathology study. RESULTS: Thirty-six different secondary metabolites from D. repens were identified to regulate thirty-one targets involved in diabetes mellitus, in which protein-tyrosine phosphatase 1B (PTP1B) was primarily targeted. Enrichment analysis of modulated proteins identified 12 different pathways in diabetic pathogenesis in which the phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt) signaling pathway was chiefly regulated. The docking study found that durantanin I possessed the highest binding affinity (-8.9 kcal/mol) with PTP1B. Similarly, ADMET profiling showed that the majority of bioactive constituents from D. repens had higher human intestinal absorptivity and minimal cytotoxicity to normal cell lines, than tumor cell lines. Further, an in vivo animal study reflected the efficacy of the hydroalcoholic extract of D. repens to lower the elevated blood glucose level by stimulating insulin secretion, maintaining pancreatic ß cell mass, regulating glycolysis/gluconeogenesis and enhancing the glucose uptake in skeletal muscles. CONCLUSION: The present study reflected the probable network interaction of bioactive constituents from D. repens, their targets and modulated pathways, which identified the prime regulation of the PI3K-Akt signaling pathway and PTP1B protein. Modulation of PTP1B protein and PI3K-Akt signaling pathway could contribute to enhancing glucose uptake, insulin production and glycolysis and decreasing gluconeogenesis in diabetes, which was evaluated via the experimental study.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes/farmacologia , Resistência à Insulina , Extratos Vegetais/farmacologia , Verbenaceae/química , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insulina , Fígado/metabolismo , Pâncreas/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
17.
Chin Herb Med ; 12(4): 406-413, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36120176

RESUMO

Objective: To report in vitro anti-oxidant activity and cytotoxicity of hydroalcoholic extract of Ficus benghalensis (bark) and Duranta repens (whole plant), and present the probable biological spectrum of major anti-oxidants from both plants. Methods: The coarse powder of both plants was first extracted with 70% ethanol (maceration) followed by 99% ethanol (Soxhlet-extraction). Anti-oxidant activity of the extracts was evaluated using DPPH, H2O2, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), NO scavenging assay, total antioxidant capacity, cupric reducing antioxidant capacity (CUPRAC), and metal chelating assay. Cytotoxicity of both extracts was evaluated using MTT assay in both tumor and normal cell lines i.e. Chinese hamster ovary cells (CHO) and A549 cells. Biological activity of individual anti-oxidants from both medicinal plants was identified using prediction of activity spectra for substances and a docking study was performed by using autodock4.0. Results: Hydroalcoholic extract of F. benghalensis and D. repens showed the highest free radical scavenging (ABTS) and chelating capacity respectively. Both extracts showed minimum cytotoxicity in normal cell lines compared to tumor cell lines. Computer imitation hits reflected the multiple biological activities agreeing with the folk use and some scientific reports. Further, we found the binding affinity of predicted anti-oxidant compounds with multiple protein molecules involved in oxidative stress. Conclusion: The present study reports the probable anti-oxidant mechanism for two folk agents and also presents probable pharmacological activities via computer simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA