Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytochem Anal ; 33(7): 1058-1067, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35795911

RESUMO

INTRODUCTION: The chronicity of advanced glycation end-products (AGEs) imparts various damages resulting in metabolic dysfunction and diseases involving inflammation and oxidative stress. The use of plant extracts is of high interest in complementary medicine. Yet, extracts are multicomponent mixtures, and difficult to pinpoint their exact mechanism. OBJECTIVES: We hypothesise that network pharmacology and bioinformatics can help experimental findings depict the exact active components and mechanism of action by which they induce their effects. Additionally, the toxicity and variability can be lowered and standardised with proper encapsulation methods. METHODOLOGY: Here, we propose the formulation of phytoniosomes encapsulating two Artemisia species (Artemisia dracunculus and Artemisia absinthium) to mitigate AGEs and their induced cell redox dysregulation in the liver. Extracts from different solvents were identified via liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS/MS). Phytoniosomes were explored for their anti-glycating effect and modulation of AGE-induced damages in THLE-2 liver cells. Network pharmacology tools were used to identify possible targets and signalling pathways implicated. RESULTS: Data demonstrated that A. absinthium phytoniosomes had a significant anti-AGE effect comparable to reference molecules and higher than A. dracunculus. They were able to restore cell dysfunction through the restoration of tumour necrosis alpha (TNF-α), interleukin 6 (IL-6), nitric oxide, and total antioxidant capacity. Phytoniosomes were able to protect cells from apoptosis by decreasing caspase 3 activity. Network pharmacology and bioinformatic analysis confirmed the induction of the effect via Akt-PI3K-MAPK and AGE-RAGE signalling pathways through quercetin and luteolin actions. CONCLUSION: The current report highlights the potential of Artemisia phytoniosomes as strong contenders in AGE-related disease therapy.


Assuntos
Artemisia , Diabetes Mellitus , Medicamentos de Ervas Chinesas , Antioxidantes/farmacologia , Artemisia/química , Caspase 3 , Cromatografia Líquida , Interleucina-6 , Fígado/metabolismo , Luteolina , Farmacologia em Rede , Óxido Nítrico , Fosfatidilinositol 3-Quinases , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina , Solventes , Espectrometria de Massas em Tandem/métodos , Fator de Necrose Tumoral alfa
2.
Mol Cell Biochem ; 477(10): 2345-2357, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35543857

RESUMO

Artemisia herba-alba (AHA) is a traditionally used plant to treat various diseases, including diabetes and metabolic dysfunctions. Plant extracts are generally explored empirically without a deeper assessment of their mechanism of action. Here, we describe a combinatorial study of biochemical, molecular, and bioinformatic (metabolite-protein pharmacology network) analyses to elucidate the mechanism of action of AHA and shed light on its multilevel effects in the treatment of diabetes-related advanced glycation end-products (AGE)-induced liver damages. The extract's polyphenols and flavonoids content were measured and then identified via LC-Q-TOF-MS/MS. Active compounds were used to generate a metabolite-target interaction network via Swiss Target Prediction and other databases. The extract was tested for its antiglycation and aggregation properties. Next, THLE-2 liver cells were challenged with AGEs, and the mechanistic markers were measured [TNF-α, IL-6, nitric oxide, total antioxidant capacity, lipid peroxidation (LPO), and caspase 3]. Metabolite and network screening showed the involvement of AHA in diabetes, glycation, liver diseases, aging, and apoptosis. Experimental confirmation showed that AHA inhibited protein modification and AGE formation. Additionally, AHA reduced inflammatory mediators (IL-6, TNFα), oxidative stress markers (NO, LPO), and apoptosis (Caspase 3). On the other hand, cellular total antioxidant capacity was restored to normal levels. The combinatorial study showed that AHA regulates AGE-induced liver damages through MAPK-AKT and AGE-RAGE signaling pathways. This report highlights the combination of experimental and network pharmacology for the exact elucidation of AHA mechanism of action as a multitarget option in the therapy of diabetes and AGEs-related diseases.


Assuntos
Artemisia , Diabetes Mellitus , Antioxidantes/farmacologia , Artemisia/metabolismo , Caspase 3/metabolismo , Diabetes Mellitus/tratamento farmacológico , Flavonoides/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Fígado/metabolismo , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA