Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Complement Integr Med ; 20(4): 721-728, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37401762

RESUMO

OBJECTIVES: Eugenia jambolana is a medicinal plant traditionally used for treating diabetes. The bioactive compound FIIc, which is derived from the fruit pulp of E. jambolana, has been identified and purified as α-HSA. Previous studies have demonstrated that administration of α-HSA for 6 weeks improved glycemic index and dyslipidemia in rats with T2D. This study investigated the molecular mechanism underlying the potential therapeutic effects of α-HSA in experimentally induced diabetic rats. METHODS: Male Wistar rats were divided into four groups: diabetic control, diabetic treated with FIIc, diabetic treated with α-HSA, and diabetic treated with glibenclamide. Over a 6-week experimental period, transcriptomic analysis was conducted on liver, skeletal, and pancreatic tissue samples collected from the rats. RESULTS: The study findings revealed significant upregulation of genes associated with glucose metabolism and insulin signaling in the groups treated with FIIc and α-HSA, compared to the diabetic control group. Moreover, pro-inflammatory genes were downregulated in these treatment groups. These results indicate that α-HSA has the potential to modulate key metabolic pathways, improve glucose homeostasis, enhance insulin sensitivity, and alleviate inflammation. CONCLUSIONS: This study provides compelling scientific evidence supporting the potential of α-HSA as a therapeutic agent for diabetes treatment. The observed upregulation of genes related to glucose metabolism and insulin signaling, along with the downregulation of pro-inflammatory genes, aligns with the pharmacological activity of α-HSA in controlling glucose homeostasis and improving insulin sensitivity. These findings suggest that α-HSA holds promise as a novel therapeutic approach for managing diabetes and its associated complications.


Assuntos
Diabetes Mellitus Experimental , Resistência à Insulina , Ratos , Animais , Ratos Wistar , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/complicações , Glicemia/metabolismo , Insulina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA