RESUMO
Although concentrated sulfuric acid saccharification is not a novel method for breaking down lignocellulosic biomass, the process by which saccharification affects biomass decomposition, sugar recovery, and by-product generation is not well studied. The present study employed Taguchi experimental design to study the effects of seven parameters on corn stover concentrated sulfuric acid saccharification. The concentration of sulfuric acid and the temperature of solubilization significantly affect corn stover decomposition. They also have significant effects on glucose and xylose recoveries. Low generation of furfural and 5-hydroxymethyl-2-furfural (5HMF) was noted and organic acids were the main by-products detected in the hydrolysate. Temperature also significantly affected the generation of levulinic acid and formic acid; however, acetic acid generation was not significantly influenced by all seven parameters. The ratio of acid to feedstock significantly affected glucose recovery, but not total sugar recovery. The corn stover hydrolysate was well fermented by both glucose- and xylose-fermenting yeast strains.
Assuntos
Carboidratos/síntese química , Carboidratos/isolamento & purificação , Lignina/química , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Ácidos Sulfúricos/química , Zea mays/químicaRESUMO
Octopamine receptors are attractive insecticide targets. To screen compounds acting at octopamine receptors simply and rapidly, we constructed a chemiluminescent reporter gene assay system that detects secreted placental alkaline phosphatase transcriptionally regulated by the cAMP response element for a silkworm octopamine receptor. This system proved useful in high-throughput screening to develop octopamine receptor-specific insecticides.
Assuntos
Fosfatase Alcalina/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Genes Reporter/genética , Inseticidas/farmacologia , Placenta/enzimologia , Receptores de Amina Biogênica/genética , Receptores de Amina Biogênica/metabolismo , Fosfatase Alcalina/metabolismo , Feminino , Expressão Gênica , Células HEK293 , Humanos , Gravidez , Receptores de Amina Biogênica/agonistas , Receptores de Amina Biogênica/antagonistas & inibidoresRESUMO
Traditional Japanese medicine uses the leaves of Kumaizasa bamboo extracted in hot water at 100°C. For this study, we developed a new, 'vigorous' extraction method involving steps at 100, 121 and 196°C. This procedure not only yielded greater amounts of extract but also with significant increase in immunostimulating activity, which induces activation of human natural killer (NK) cells, macrophages and potent induction of IL-2, IL-12 and IFN-γ in tumor bearing mice. The efficacy of the extract to facilitate phagocytosis and nitric oxide production by mouse peritoneal macrophages was determined and compared with that of 1,3-ß-glucan. Anti-tumor activity was evaluated in vivo in several mouse tumor models (S-180, C38 and Meth-A). Oral administration of the extracts was carried out when tumor reached size of approximately 6 mm at concentrations of 0.05% or higher. The extracts significantly suppressed tumor growth in S-180 and C38 tumor models. Overall survival was significantly prolonged in the treatment group than that of control. Activation of macrophages and NK cells by the extracts suggests that the anti-tumor efficacy of the extract is mediated by immunopotentiation. The extracts resolved into three major fractions (F-I, F-II and F-III) in Sephadex gel chromatography. Fraction F-I consists of 1,3-ß-glucan and stimulated both macrophages and NK cells suggesting that it may be the primary immunopotentiating factor in suppressing cancer. Fraction F-III has potent free radical scavenging effects and may play an important role in cancer prevention. These results warrant further translation and clinical investigations.
RESUMO
A Gram-negative, moderately halophilic, short rod-shaped, aerobic bacterium with peritrichous flagellae, strain DQD2-30(T), was isolated from a soil sample contaminated with crude oil from the Daqing oilfield in Heilongjiang Province, north-eastern China. The novel strain was capable of growth at NaCl concentrations of 1-15 % (w/v) [optimum at 5-10 % (w/v)]. Phylogenetic analyses based on 16S rRNA gene sequences showed that the novel strain belonged to the genus Halomonas in the class Gammaproteobacteria; the highest 16S rRNA gene sequence similarities were with Halomonas desiderata DSM 9502(T) (98.8 %), Halomonas campisalis A4(T) (96.6 %) and Halomonas gudaonensis CGMCC 1.6133(T) (95.1 %). The major cellular fatty acids of strain DQD2-30(T) were C(18 : 1)omega7c (43.97 %), C(19 : 0 )cyclo omega8c (23.37 %) and C(16 : 0) (14.83 %). The predominant respiratory lipoquinone was ubiquinone with nine isoprene units (Q9). The DNA G+C content was 67.0 mol%. The DNA-DNA hybridization values of strain DQD2-30(T) with the most closely related species of the genus Halomonas were 51.8 %, 28.4 % and 23.5 % for H. desiderata, H. campisalis and H. gudaonensis, respectively. Based on these analyses, strain DQD2-30(T )(=CGMCC 1.6443(T)=LMG 23896(T)) is proposed to represent the type strain of a novel species, Halomonas daqingensis sp. nov.
Assuntos
Halomonas/classificação , Halomonas/fisiologia , Petróleo , Microbiologia do Solo , Ácidos Graxos/análise , Halomonas/genética , Halomonas/ultraestrutura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Especificidade da EspécieRESUMO
We isolated a novel apoptosis-inducing component, tryptophol, from vinegar produced from boiled extract of black soybean (black soybean vinegar). Compound-6 purified from an ethyl acetate extract of black soybean vinegar using high performance liquid chromatography (HPLC) induced fragmentation of DNA and the development of apoptotic bodies (characteristic physiological features of apoptosis) in U937 cells. By analysis of chemical structure, this active compound was identified as tryptophol. Tryptophol induced apoptosis involving caspase-8 and -3 activation, followed by cleavage of poly (ADP-ribose) polymerase (PARP), as shown by measurement of enzyme activity and immunoblot analysis. The cell viability of normal lymphocytes separated from human blood was less affected by tryptophol, and fragmentation of DNA was not induced in normal lymphocytes. These results indicate that tryptophol isolated from black soybean vinegar inhibited the proliferation of U937 cells by inducing apoptosis via a pathway involving caspase-8 followed by caspase-3, without affecting normal lymphocytes.
Assuntos
Ácido Acético/química , Antineoplásicos Fitogênicos , Apoptose/efeitos dos fármacos , Glycine max/química , Indóis/farmacologia , Western Blotting , Caspases/metabolismo , Cromatografia Líquida de Alta Pressão , Fragmentação do DNA , DNA de Neoplasias/biossíntese , DNA de Neoplasias/genética , Humanos , Indóis/isolamento & purificação , Linfócitos/efeitos dos fármacos , Extratos Vegetais/química , Espectrofotometria Ultravioleta , Células U937RESUMO
A potent antioxidative compound in crude canola oil, canolol, was recently identified, and reported herein are studies of its scavenging capacity against the endogenous mutagen peroxynitrite (ONOO(-)). ONOO(-) is generated by the reaction between superoxide anion radical and nitric oxide, both of which are produced by inflammatory leukocytes. Among various antioxidative substances of natural or synthetic origin, canolol was one of the most potent antimutagenic compounds when Salmonella typhimurium TA102 was used in the modified Ames test. Its potency was higher than that of flavonoids (e.g., rutin) and alpha-tocopherol and was equivalent to that of ebselen. Canolol suppressed ONOO(-)-induced bactericidal action. It also reduced intracellular oxidative stress and apoptosis in human cancer SW480 cells when used at a concentration below 20 microM under H(2)O(2)-induced oxidative stress. In addition, canolol suppressed plasmid DNA (pUC19) strand breakage induced by ONOO(-), as revealed by agarose gel electrophoresis.