Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 27(6): 879-890, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36852461

RESUMO

Tumour evolution and efficacy of treatments are controlled by the microenvironment, the composition of which is primarily dependent on the angiogenic reaction to hypoxic stress. Tumour angiogenesis normalization is a challenge for adjuvant therapy strategies to chemo-, radio- and immunotherapeutics. Myo-inositol trispyrophosphate (ITPP) appears to provide the means to alleviate hypoxia in the tumour site by a double molecular mechanism. First, it modifies the properties of red blood cells (RBC) to release oxygen (O2 ) in the hypoxic sites more easily, leading to a rapid and stable increase in the partial pressure of oxygen (pO2 ). And second, it activates the endothelial phosphatase and tensin homologue deleted on Chromosome 10 (PTEN). The hypothesis that stable normalization of the vascular system is due to the PTEN, a tumour suppressor and phosphatase which controls the proper angiogenic reaction was ascertained. Here, by direct biochemical measurements of PTEN competitive activity in relation to PIP2 production, we show that the kinetics are complex in terms of the activation/inhibition effects of ITPP with an inverted consequence towards the kinase PI3K. The use of the surface plasmon resonance (SPR) technique allowed us to demonstrate that PTEN binds inositol derivatives differently but weakly. This method permitted us to reveal that PTEN is highly sensitive to the local concentration conditions, especially that ITPP increases the PTEN activity towards PIP3, and importantly, that PTEN affinity for ITPP is considerably increased by the presence of PIP3, as occurs in vivo. Our approach demonstrates the validity of using ITPP to activate PTEN for stable vessel normalization strategies.


Assuntos
Fosfatos de Inositol , Oxigênio , Humanos , Oxigênio/metabolismo , Fosfatos de Inositol/farmacologia , Hipóxia/metabolismo , Monoéster Fosfórico Hidrolases , PTEN Fosfo-Hidrolase
2.
J Cell Mol Med ; 25(7): 3284-3299, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33624446

RESUMO

Pathologic angiogenesis directly responds to tumour hypoxia and controls the molecular/cellular composition of the tumour microenvironment, increasing both immune tolerance and stromal cooperation with tumour growth. Myo-inositol-trispyrophosphate (ITPP) provides a means to achieve stable normalization of angiogenesis. ITPP increases intratumour oxygen tension (pO2 ) and stabilizes vessel normalization through activation of endothelial Phosphatase-and-Tensin-homologue (PTEN). Here, we show that the tumour reduction due to the ITPP-induced modification of the tumour microenvironment by elevating pO2 affects the phenotype and properties of the immune infiltrate. Our main observations are as follows: a relative change in the M1 and M2 macrophage-type proportions, increased proportions of NK and CD8+ T cells, and a reduction in Tregs and Th2 cells. We also found, in vivo and in vitro, that the impaired access of PD1+ NK cells to tumour cells is due to their adhesion to PD-L1+ /PD-L2+ endothelial cells in hypoxia. ITPP treatment strongly reduced PD-L1/PD-L2 expression on CD45+/CD31+ cells, and PD1+ cells were more numerous in the tumour mass. CTLA-4+ cell numbers were stable, but level of expression decreased. Similarly, CD47+ cells and expression were reduced. Consequently, angiogenesis normalization induced by ITPP is the mean to revert immunosuppression into an antitumor immune response. This brings a key adjuvant effect to improve the efficacy of chemo/radio/immunotherapeutic strategies for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Hipóxia Celular , Fosfatos de Inositol/farmacologia , Neovascularização Patológica/tratamento farmacológico , Microambiente Tumoral , Animais , Antineoplásicos/uso terapêutico , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Fosfatos de Inositol/uso terapêutico , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neovascularização Patológica/imunologia , PTEN Fosfo-Hidrolase/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Células Tumorais Cultivadas
3.
Biometals ; 29(6): 1035-1046, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27812766

RESUMO

The antimetastatic ruthenium(III) complex (H2Im)[trans-RuCl4(HIm)(DMSO)] (NAMI-A) as well as its two analogues (H2Ind)[trans-RuCl4(HInd)(DMSO)] (Ru-Ind) and (HIsq)[trans-RuCl4(Isq)(DMSO)] (Ru-Isq) (HIm-imidazole, HInd-indazole, Isq-isoquinoline, DMSO-dimethyl sulfoxide) were tested for their effect on endothelial cell functions in vitro on human skin microvascular endothelial cells (HSkMEC) and human endothelial progenitor cells (HPEC-CB.2) under normoxic (21 % O2) and hypoxic (1 % O2) conditions. All studied complexes showed very low cytotoxicity profiles towards both mature microvascular and precursor endothelial cells (ECs), independently of oxygen concentration. Among tested compounds Ru-Ind exhibited the highest cytotoxicity. The antiangiogenic activity of ruthenium complexes was evaluated for their influence on pseudo-vessels formation by microvascular endothelial cells (HSkMEC) because of their involvement in melanoma progression. Our studies indicated that Ru-Ind and Ru-Isq exhibited hypoxia- and dose-dependent-inhibition of angiogenesis on Matrigel™. Significant hypoxia-selective downregulation of pseudo-vessels formation by Ru-Isq correlates with efficient inhibition of cell motility. Interestingly, in the applied concentration doses migration of endothelial cells was also inhibited by NAMI-A, but the pseudo-vessels formation on Matrigel™ was unaffected. Angiogenesis-related genes expression profile for both mature and precursor ECs indicated that inhibition of angiogenesis, mainly due to Ru-Isq, as compared to NAMI-A and Ru-Ind correlated with downregulation of CD31 and CD144 expression and upregulation of NOTCH4 expression in mature ECs, which is essential for endothelial cell motility and stalk cells organization control. The hypoxia-selective antiangiogenic activity of Ru-Ind and Ru-Isq, NAMI-A analogues makes them potent antimetastatic therapeutics for their selective action in hypoxia which controls tumor pathologic angiogenesis.


Assuntos
Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Dimetil Sulfóxido/análogos & derivados , Compostos Organometálicos/química , Rutênio/química , Antineoplásicos/química , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Dimetil Sulfóxido/química , Avaliação Pré-Clínica de Medicamentos/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Neovascularização Patológica/genética , Compostos de Rutênio , Hipóxia Tumoral/efeitos dos fármacos
4.
J Mol Med (Berl) ; 91(7): 883-99, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23471434

RESUMO

Tumor hypoxia is a characteristic of cancer cell growth and invasion, promoting angiogenesis, which facilitates metastasis. Oxygen delivery remains impaired because tumor vessels are anarchic and leaky, contributing to tumor cell dissemination. Counteracting hypoxia by normalizing tumor vessels in order to improve drug and radio therapy efficacy and avoid cancer stem-like cell selection is a highly challenging issue. We show here that inositol trispyrophosphate (ITPP) treatment stably increases oxygen tension and blood flow in melanoma and breast cancer syngeneic models. It suppresses hypoxia-inducible factors (HIFs) and proangiogenic/glycolysis genes and proteins cascade. It selectively activates the tumor suppressor phosphatase and tensin homolog (PTEN) in vitro and in vivo at the endothelial cell (EC) level thus inhibiting PI3K and reducing tumor AKT phosphorylation. These mechanisms normalize tumor vessels by EC reorganization, maturation, pericytes attraction, and lowering progenitor cells recruitment in the tumor. It strongly reduces vascular leakage, tumor growth, drug resistance, and metastasis. ITPP treatment avoids cancer stem-like cell selection, multidrug resistance (MDR) activation and efficiently enhances chemotherapeutic drugs activity. These data show that counteracting tumor hypoxia by stably restoring healthy vasculature is achieved by ITPP treatment, which opens new therapeutic options overcoming hypoxia-related limitations of antiangiogenesis-restricted therapies. By achieving long-term vessels normalization, ITPP should provide the adjuvant treatment required in order to overcome the subtle definition of therapeutic windows for in vivo treatments aimed by the current strategies against angiogenesis-dependent tumors.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Fosfatos de Inositol/uso terapêutico , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Feminino , Hipóxia/tratamento farmacológico , Fosfatos de Inositol/farmacologia , Melanoma/irrigação sanguínea , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neovascularização Patológica/tratamento farmacológico , Oxigênio/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Carga Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA