Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
GM Crops Food ; 13(1): 290-298, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36263889

RESUMO

Late blight, caused by Phytophthora infestans, is the most devastating disease in potato production. Here, we show full late blight resistance in a location with a genetically diverse pathogen population with the use of GM potato stacked with three resistance (R) genes over three seasons. In addition, using this field trials, we demonstrate that in-the-field intervention among consumers led to change for more favorable attitude generally toward GM crops.


Assuntos
Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Phytophthora infestans/genética , Atitude
2.
Methods Mol Biol ; 2354: 111-122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34448157

RESUMO

Gene technology and editing are not only biotechnological techniques for creating new crop varieties but are also tools for researchers to discover gene functions. Field trial following laboratory experiments is an important step in order to evaluate new functions since many phenotypes, and combinations thereof, are difficult to detect in controlled environments and molecular analyses are nowadays possible to do in the field. Here we describe a standard protocol for creating new potato lines and producing seed tubers for field trials within 1 year.


Assuntos
Solanum tuberosum , Tubérculos , Plantas Geneticamente Modificadas , Solanum tuberosum/genética
3.
Sci Rep ; 11(1): 4487, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627728

RESUMO

The use of pathogen-resistant cultivars is expected to increase yield and decrease fungicide use in agriculture. However, in potato breeding, increased resistance obtained via resistance genes (R-genes) is hampered because R-gene(s) are often specific for a pathogen race and can be quickly overcome by the evolution of the pathogen. In parallel, susceptibility genes (S-genes) are important for pathogenesis, and loss of S-gene function confers increased resistance in several plants, such as rice, wheat, citrus and tomatoes. In this article, we present the mutation and screening of seven putative S-genes in potatoes, including two DMR6 potato homologues. Using a CRISPR/Cas9 system, which conferred co-expression of two guide RNAs, tetra-allelic deletion mutants were generated and resistance against late blight was assayed in the plants. Functional knockouts of StDND1, StCHL1, and DMG400000582 (StDMR6-1) generated potatoes with increased resistance against late blight. Plants mutated in StDND1 showed pleiotropic effects, whereas StDMR6-1 and StCHL1 mutated plants did not exhibit any growth phenotype, making them good candidates for further agricultural studies. Additionally, we showed that DMG401026923 (here denoted StDMR6-2) knockout mutants did not demonstrate any increased late blight resistance, but exhibited a growth phenotype, indicating that StDMR6-1 and StDMR6-2 have different functions. To the best of our knowledge, this is the first report on the mutation and screening of putative S-genes in potatoes, including two DMR6 potato homologues.


Assuntos
Sistemas CRISPR-Cas/genética , Resistência à Doença/genética , Mutação/genética , Solanum tuberosum/genética , Citrus/genética , Edição de Genes/métodos , Solanum lycopersicum/genética , Oryza/genética , Fenótipo , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética
4.
Microbiologyopen ; 5(3): 512-26, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27060604

RESUMO

Burkholderia is an important genus encompassing a variety of species, including pathogenic strains as well as strains that promote plant growth. We have carried out a global strategy, which combined two complementary approaches. The first one is genome guided with deep analysis of genome sequences and the second one is assay guided with experiments to support the predictions obtained in silico. This efficient screening for new secondary metabolites, performed on 48 gapless genomes of Burkholderia species, revealed a total of 161 clusters containing nonribosomal peptide synthetases (NRPSs), with the potential to synthesize at least 11 novel products. Most of them are siderophores or lipopeptides, two classes of products with potential application in biocontrol. The strategy led to the identification, for the first time, of the cluster for cepaciachelin biosynthesis in the genome of Burkholderia ambifaria AMMD and a cluster corresponding to a new malleobactin-like siderophore, called phymabactin, was identified in Burkholderia phymatum STM815 genome. In both cases, the siderophore was produced when the strain was grown in iron-limited conditions. Elsewhere, the cluster for the antifungal burkholdin was detected in the genome of B. ambifaria AMMD and also Burkholderia sp. KJ006. Burkholderia pseudomallei strains harbor the genetic potential to produce a novel lipopeptide called burkhomycin, containing a peptidyl moiety of 12 monomers. A mixture of lipopeptides produced by Burkholderia rhizoxinica lowered the surface tension of the supernatant from 70 to 27 mN·m(-1) . The production of nonribosomal secondary metabolites seems related to the three phylogenetic groups obtained from 16S rRNA sequences. Moreover, the genome-mining approach gave new insights into the nonribosomal synthesis exemplified by the identification of dual C/E domains in lipopeptide NRPSs, up to now essentially found in Pseudomonas strains.


Assuntos
Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Genoma Bacteriano/genética , Lipopeptídeos/biossíntese , Peptídeo Sintases/metabolismo , Sideróforos/biossíntese , Antifúngicos/metabolismo , Proteínas de Bactérias/biossíntese , Sequência de Bases , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Lipopeptídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sideróforos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA