Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur J Pharmacol ; 935: 175321, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228744

RESUMO

Curcumin (aglycone curcumin) has antitumor properties in a variety of malignancies via the alteration of multiple cancer-related biological pathways; however, its clinical application has been hampered due to its poor bioavailability. To overcome this limitation, we have developed a synthesized curcumin ß-D-glucuronide sodium salt (TBP1901), a prodrug form of aglycone curcumin. In this study, we aimed to clarify the pharmacologic characteristics of TBP1901. In ß-glucuronidase (GUSB)-proficient mice, both curcumin ß-D-glucuronide and its active metabolite, aglycone curcumin, were detected in the blood after TBP1901 injection, whereas only curcumin ß-D-glucuronide was detected in GUSB-impaired mice, suggesting that GUSB plays a pivotal role in the conversion of TBP1901 into aglycone curcumin in vivo. TBP1901 itself had minimal antitumor effects in vitro, whereas it demonstrated significant antitumor effects in vivo. Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screen disclosed the genes associated with NF-κB signaling pathway and mitochondria were among the highest hit. In vitro, aglycone curcumin inhibited NF-kappa B signaling pathways whereas it caused production of reactive oxygen species (ROS). ROS scavenger, N-acetyl-L-cysteine, partially reversed antitumor effects of aglycone curcumin. In summary, TBP1901 can exert antitumor effects as a prodrug of aglycone curcumin through GUSB-dependent activation.


Assuntos
Curcumina , Pró-Fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Sistemas CRISPR-Cas/genética , Curcumina/farmacologia , Glucuronidase/metabolismo , Glucuronídeos/metabolismo , Glucuronídeos/farmacologia , Glucuronídeos/uso terapêutico , NF-kappa B/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
2.
J Gastroenterol ; 54(8): 687-698, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30737573

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most intractable cancers, so the development of novel therapeutics has been required to improve patient outcomes. Curcumin, a polyphenol from Curcuma longa, exhibits various health benefits including antitumor effects, but its clinical utility is limited because of low bioavailability. Theracurmin® (THC) is a highly bioavailable curcumin dispersed with colloidal submicron particles. METHODS: We examined antitumor effects of THC on ESCC cells by cell viability assay, colony and spheroid formation assay, and xenograft models. To reveal its mechanisms, we investigated the levels of reactive oxygen species (ROS) and performed microarray gene expression analysis. According to those analyses, we focused on NQO1, which involved in the removal of ROS, and examined the effects of NQO1-knockdown or overexpression on THC treatment. Moreover, the therapeutic effect of THC and NQO1 inhibitor on ESCC patient-derived xenografts (PDX) was investigated. RESULTS: THC caused cytotoxicity in ESCC cells, and suppressed the growth of xenografted tumors more efficiently than curcumin. THC increased ROS levels and activated the NRF2-NMRAL2P-NQO1 expressions. Inhibition of NQO1 in ESCC cells by shRNA or NQO1 inhibitor resulted in an increased sensitivity of cells to THC, whereas overexpression of NQO1 antagonized it. Notably, NQO1 inhibitor significantly enhanced the antitumor effects of THC in ESCC PDX tumors. CONCLUSIONS: These findings suggest the potential usefulness of THC and its combination with NQO1 inhibitor as a therapeutic option for ESCC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/administração & dosagem , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Pelados , Camundongos Endogâmicos C57BL , Camundongos SCID , NAD(P)H Desidrogenase (Quinona)/genética , RNA Interferente Pequeno/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Gastroenterology ; 149(7): 1700-15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26376349

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive squamous cell carcinomas and is highly prevalent in Asia. Alcohol and its metabolite, acetaldehyde, are considered definite carcinogens for the esophagus. Polymorphisms in the aldehyde dehydrogenase 2 gene, which encodes an enzyme that eliminates acetaldehyde, have been associated with esophageal carcinogenesis. Studies of the mutagenic and carcinogenic effects of acetaldehyde support this observation. Several recent large-scale comprehensive analyses of the genomic alterations in ESCC have shown a high frequency of mutations in genes such as TP53 and others that regulate the cell cycle or cell differentiation. Moreover, whole genome and whole exome sequencing studies have frequently detected somatic mutations, such as G:C→A:T transitions or G:C→C:G transversions, in ESCC tissues. Genomic instability, caused by abnormalities in the Fanconi anemia DNA repair pathway, is also considered a pathogenic mechanism of ESCC. Advances in diagnostic techniques such as magnifying endoscopy with narrow band imaging or positron emission tomography have increased the accuracy of diagnosis of ESCC. Updated guidelines from the National Comprehensive Cancer Network standardize the practice for the diagnosis and treatment of esophageal cancer. Patients with ESCC are treated endoscopically or with surgery, chemotherapy, or radiotherapy, based on tumor stage. Minimally invasive treatments help improve the quality of life of patients who undergo such treatments. We review recent developments in the diagnosis and treatment of ESCC and advances gained from basic and clinical research.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/virologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Terapia Combinada , Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/virologia , Carcinoma de Células Escamosas do Esôfago , Predisposição Genética para Doença , Humanos , Estilo de Vida , Estadiamento de Neoplasias , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/virologia , Valor Preditivo dos Testes , Fatores de Risco , Transdução de Sinais , Fumar/efeitos adversos , Fumar/epidemiologia , Resultado do Tratamento
4.
Obesity (Silver Spring) ; 22(10): 2115-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25044690

RESUMO

OBJECTIVE: The hypothalamus is the brain center that controls the energy balance. Anorexigenic proopiomelanocortin (POMC) neurons and orexigenic AgRP neurons in the arcuate nucleus of the hypothalamus plays critical roles in energy balance regulation. FoxO1 is a transcription factor regulated by insulin signaling that is deacetylated by Sirt1, a nicotinamide adenine dinucleotide- (NAD(+) -) dependent deacetylase. Overexpression of insulin-resistant constitutively-nuclear FoxO1 (CN-FoxO1) in POMC neurons leads to obesity, whereas Sirt1 overexpression in POMC neurons leads to leanness. Whether overexpression of Sirt1 in POMC neurons could rescue the obesity caused by insulin-resistant CN-FoxO1 was tested here. METHODS: POMC neuron-specific CN-FoxO1/Sirt1 double-KI (DKI) mice were analyzed. RESULTS: The obese phenotype of CN-FoxO1 KI mice was rescued in male DKI mice. Reduced O2 consumption, increased adiposity, and fewer POMC neurons observed in CN-FoxO1 mice were rescued in male DKI mice without affecting food intake and locomotor activity. Sirt1 overexpression decreased FoxO1 acetylation and protein levels without affecting its nuclear localization in mouse embryonic fibroblasts and hypothalamic N41 cells. CONCLUSIONS: Sirt1 rescues the obesity induced by insulin-resistant CN-FoxO1 in POMC neurons of male mice by decreasing FoxO1 protein through deacetylation. Sirt1 ameliorates obesity caused by a genetic model of central insulin resistance.


Assuntos
Resistência à Insulina , Obesidade/prevenção & controle , Pró-Opiomelanocortina/metabolismo , Sirtuína 1/metabolismo , Animais , Metabolismo Energético/fisiologia , Fatores de Transcrição Forkhead , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Transdução de Sinais/genética
5.
Diabetologia ; 57(4): 819-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24374551

RESUMO

AIMS/HYPOTHESIS: Obesity is associated with ageing and increased energy intake, while restriction of energy intake improves health and longevity in multiple organisms; the NAD(+)-dependent deacetylase sirtuin 1 (SIRT1) is implicated in this process. Pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons in the arcuate nucleus (ARC) of the hypothalamus are critical for energy balance regulation, and the level of SIRT1 protein decreases with age in the ARC. In the current study we tested whether conditional Sirt1 overexpression in mouse POMC or AgRP neurons prevents age-associated weight gain and diet-induced obesity. METHODS: We targeted Sirt1 cDNA sequence into the Rosa26 locus and generated conditional Sirt1 knock-in mice. These mice were crossed with mice harbouring either Pomc-Cre or Agrp-Cre and the metabolic variables, food intake, energy expenditure and sympathetic activity in adipose tissue of the resultant mice were analysed. We also used a hypothalamic cell line to investigate the molecular mechanism by which Sirt1 overexpression modulates leptin signalling. RESULTS: Conditional Sirt1 overexpression in mouse POMC or AgRP neurons prevented age-associated weight gain; overexpression in POMC neurons stimulated energy expenditure via increased sympathetic activity in adipose tissue, whereas overexpression in AgRP neurons suppressed food intake. SIRT1 improved leptin sensitivity in hypothalamic neurons in vitro and in vivo by downregulating protein-tyrosine phosphatase 1B, T cell protein-tyrosine phosphatase and suppressor of cytokine signalling 3. However, these phenotypes were absent in mice consuming a high-fat, high-sucrose diet due to decreases in ARC SIRT1 protein and hypothalamic NAD(+) levels. CONCLUSIONS/INTERPRETATION: ARC SIRT1 is a negative regulator of energy balance, and decline in ARC SIRT1 function contributes to disruption of energy homeostasis by ageing and diet-induced obesity.


Assuntos
Hipotálamo/metabolismo , Leptina/farmacologia , Sirtuína 1/metabolismo , Aumento de Peso/fisiologia , Animais , Calorimetria Indireta , Genótipo , Hipotálamo/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Sirtuína 1/genética , Aumento de Peso/genética
6.
Endocr J ; 60(10): 1117-29, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23995917

RESUMO

Miglitol is an alpha-glucosidase inhibitor that improves post-prandial hyperglycemia, and it is the only drug in its class that enters the bloodstream. Anecdotally, miglitol lowers patient body weight more effectively than other alpha-glucosidase inhibitors, but the precise mechanism has not been addressed. Therefore, we analyzed the anti-obesity effects of miglitol in mice and in the HB2 brown adipocyte cell line. Miglitol prevented diet-induced obesity by stimulating energy expenditure without affecting food intake in mice. Long-term miglitol treatment dose-dependently prevented diet-induced obesity and induced mitochondrial gene expression in brown adipose tissue. The anti-obesity effect was independent of preventing carbohydrate digestion in the gastrointestinal tract. Miglitol effectively stimulated energy expenditure in mice fed a high-fat high-monocarbohydrate diet, and intraperitoneal injection of miglitol was sufficient to stimulate energy expenditure in mice. Acarbose, which is a non-absorbable alpha glucosidase inhibitor, also prevented diet-induced obesity, but through a different mechanism: it did not stimulate energy expenditure, but caused indigestion, leading to less energy absorption. Miglitol promoted adrenergic signaling in brown adipocytes in vitro. These data indicate that circulating miglitol stimulates brown adipose tissue and increases energy expenditure, thereby preventing diet-induced obesity. Further optimizing miglitol's effect on brown adipose tissue could lead to a novel anti-obesity drug.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/fisiologia , Fármacos Antiobesidade/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Obesidade/prevenção & controle , 1-Desoxinojirimicina/farmacologia , Acarbose/farmacologia , Adipócitos Marrons/metabolismo , Animais , Linhagem Celular , Dieta Hiperlipídica , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Digestão/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Consumo de Oxigênio/efeitos dos fármacos , Receptores Adrenérgicos beta/fisiologia , Transdução de Sinais/efeitos dos fármacos
7.
Endocrinology ; 153(2): 659-71, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22186407

RESUMO

Recent studies have revealed that insulin signaling in pancreatic ß-cells and the hypothalamus is critical for maintaining nutrient and energy homeostasis, the failure of which are hallmarks of metabolic syndrome. We previously reported that forkhead transcription factor forkhead box-containing protein of the O subfamily (FoxO)1, a downstream effector of insulin signaling, plays important roles in ß-cells and the hypothalamus when we investigated the roles of FoxO1 independently in the pancreas and hypothalamus. However, because metabolic syndrome is caused by the combined disorders in hypothalamus and pancreas, to elucidate the combined implications of FoxO1 in these organs, we generated constitutively active FoxO1 knockin (KI) mice with specific activation in both the hypothalamus and pancreas. The KI mice developed obesity, insulin resistance, glucose intolerance, and hypertriglyceridemia due to increased food intake, decreased energy expenditure, and impaired insulin secretion, which characterize metabolic syndrome. The KI mice also had increased hypothalamic Agouti-related protein and neuropeptide Y levels and decreased uncoupling protein 1 and peroxisome proliferator-activated receptor γ coactivator 1α levels in adipose tissue and skeletal muscle. Impaired insulin secretion was associated with decreased expression of pancreatic and duodenum homeobox 1 (Pdx1), muscyloaponeurotic fibrosarcoma oncogene homolog A (MafA), and neurogenic differentiation 1 (NeuroD) in islets, although ß-cell mass was paradoxically increased in KI mice. Based on these results, we propose that uncontrolled FoxO1 activation in the hypothalamus and pancreas accounts for the development of obesity and glucose intolerance, hallmarks of metabolic syndrome.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/fisiologia , Intolerância à Glucose/metabolismo , Hipotálamo/metabolismo , Obesidade/metabolismo , Pâncreas/metabolismo , Animais , Proliferação de Células , Ingestão de Alimentos , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Intolerância à Glucose/genética , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Camundongos , Obesidade/genética , Consumo de Oxigênio , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA