Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Nutr ; 126(2): 183-190, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33059793

RESUMO

Lipid metabolism and inflammation contribute to CVD development. This study investigated whether the consumption of cranberries (CR; Vaccinium macrocarpon) can alter HDL metabolism and prevent inflammation in mice expressing human apo A-I transgene (hApoAITg), which have similar HDL profiles to those of humans. Male hApoAITg mice were fed a modified American Institute of Nutrition-93M high-fat/high-cholesterol diet (16 % fat, 0·25 % cholesterol, w/w; n 15) or the high-fat/high-cholesterol diet containing CR (5 % dried CR powder, w/w, n 16) for 8 weeks. There were no significant differences in body weight between the groups. Serum total cholesterol, non-HDL-cholesterol and TAG concentrations were significantly lower in the control than CR group with no significant differences in serum HDL-cholesterol and apoA-I. Mice fed CR showed significantly lower serum lecithin-cholesterol acyltransferase activity than the control. Liver weight and steatosis were not significantly different between the groups, but hepatic expression of genes involved in cholesterol metabolism was significantly lower in the CR group. In the epididymal white adipose tissue (eWAT), the CR group showed higher weights with decreased expression of genes for lipogenesis and fatty acid oxidation. The mRNA abundance of F4/80, a macrophage marker and the numbers of crown-like structures were less in the CR group. In the soleus muscle, the CR group also demonstrated higher expression of genes for fatty acid ß-oxidation and mitochondrial biogenesis than those of the control. In conclusion, although CR consumption elicited minor effects on HDL metabolism, it prevented obesity-induced inflammation in eWAT with concomitant alterations in soleus muscle energy metabolism.


Assuntos
Frutas , Hipercolesterolemia , Hiperlipidemias , Metabolismo dos Lipídeos , Vaccinium macrocarpon , Animais , Apolipoproteína A-I/genética , Colesterol na Dieta/administração & dosagem , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Humanos , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Extratos Vegetais/metabolismo
2.
Eur J Nutr ; 57(1): 405-415, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28718016

RESUMO

PURPOSES: We previously showed that polyphenol-rich blackcurrant extract (BCE) showed a hypocholesterolemic effect in mice fed a high fat diet. As direct cholesterol removal from the body via the intestine has been recently appreciated, we investigated the effect of BCE on the modulation of genes involved in intestinal cholesterol transport using Caco-2 cells as an in vitro model. METHODS: Caco-2 cells were treated with BCE to determine its effects on mRNA and protein expression of genes important for intestinal cholesterol transport, low-density lipoprotein (LDL) uptake, cellular cholesterol content, and cholesterol transport from basolateral to apical membrane of Caco-2 cell monolayers. Cells were also treated with anthocyanin-rich or -poor fraction of BCE to determine the role of anthocyanin on BCE effects. RESULTS: BCE significantly increased protein levels of LDL receptor (LDLR) without altering its mRNA, which consequently increased LDL uptake into Caco-2 cells. This post-transcriptional induction of LDLR by BCE was markedly attenuated in the presence of rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1). In addition, BCE altered genes involved in cholesterol transport in the enterocytes, including apical and basolateral cholesterol transporters, in such a way that could enhance cholesterol flux from the basolateral to apical side of the enterocytes. Indeed, BCE significantly increased the flux of LDL-derived cholesterol from the basolateral to the apical chamber of Caco-2 monolayer. LDLR protein levels were markedly increased by anthocyanin-rich fraction, but not by anthocyanin-free fraction. CONCLUSION: mTORC1-dependent post-transcriptional induction of LDLR by BCE anthocyanins drove the transport of LDL-derived cholesterol to the apical side of the enterocytes. This may represent a potential mechanism for the hypocholesterolemic effect of BCE.


Assuntos
Antocianinas/farmacologia , Colesterol/metabolismo , Frutas/química , Extratos Vegetais/farmacologia , Receptores de LDL/genética , Ribes , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Células CACO-2 , LDL-Colesterol/metabolismo , Enterócitos/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , RNA Mensageiro/análise , Receptores de LDL/análise , Receptores de LDL/efeitos dos fármacos , Sirolimo/farmacologia , Transcrição Gênica/efeitos dos fármacos
3.
J Nutr Biochem ; 43: 27-35, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28193580

RESUMO

The objective of this study was to determine if astaxanthin (ASTX), a xanthophyll carotenoid, can prevent obesity-associated metabolic abnormalities, inflammation and fibrosis in diet-induced obesity (DIO) and nonalcoholic steatohepatitis (NASH) mouse models. Male C57BL/6J mice were fed a low-fat (6% fat, w/w), a high-fat/high-sucrose control (HF/HS; 35% fat, 35% sucrose, w/w), or a HF/HS containing ASTX (AHF/HS; 0.03% ASTX, w/w) for 30 weeks. To induce NASH, another set of mice was fed a HF/HS diet containing 2% cholesterol (HF/HS/HC) a HF/HS/HC with 0.015% ASTX (AHF/HS/HC) for 18 weeks. Compared to LF, HF/HS significantly increased plasma total cholesterol, triglyceride and glucose, which were lowered by ASTX. ASTX decreased hepatic mRNA levels of markers of macrophages and fibrosis in both models. The effect of ASTX was more prominent in NASH than DIO mice. In epididymal fat, ASTX also decreased macrophage infiltration and M1 macrophage marker expression, and inhibited hypoxia-inducible factor 1-α and its downstream fibrogenic genes in both mouse models. ASTX significantly decreased tumor necrosis factor α mRNA in the splenocytes from DIO mice upon lipopolysaccharides stimulation compared with those from control mice fed an HF/HS diet. Additionally, ASTX significantly elevated the levels of genes that regulate fatty acid ß-oxidation and mitochondrial biogenesis in the skeletal muscle compared with control obese mice, whereas no differences were noted in adipose lipogenic genes. Our results indicate that ASTX inhibits inflammation and fibrosis in the liver and adipose tissue and enhances the skeletal muscle's capacity for mitochondrial fatty acid oxidation in obese mice.


Assuntos
Tecido Adiposo/patologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/complicações , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Suplementos Nutricionais , Modelos Animais de Doenças , Fibrose/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Lipídeos/sangue , Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/prevenção & controle , Paniculite/metabolismo , Paniculite/patologia , Paniculite/prevenção & controle , Xantofilas/farmacologia
4.
Nutr Res ; 37: 67-77, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28215316

RESUMO

Former smokers are at increased risk for cardiovascular disease. We hypothesized that dietary aronia polyphenols would reduce biomarkers of cardiovascular disease risk, inflammation, and oxidative stress in former smokers. We also determined the extent these effects were associated with polyphenol bioavailability. A 12-week, randomized, placebo-controlled trial was conducted in 49 healthy adult former smokers (n = 24/placebo, n = 25/aronia) to evaluate if daily consumption of 500 mg aronia extract modulated plasma lipids, blood pressure, biomarkers of inflammation and oxidative stress, and lipid transport genes of peripheral blood mononuclear cells. The primary outcome was change in low-density lipoprotein cholesterol (LDL-C) from baseline, and multivariate correlation analysis was performed to determine if changes in lipids were associated with urinary polyphenol excretion. Aronia consumption reduced fasting plasma total cholesterol by 8% (P = .0140), LDL-C by 11% (P = .0285), and LDL receptor protein in peripheral blood mononuclear cells (P = .0036) at 12 weeks compared with the placebo group. Positive changes in the urinary polyphenol metabolites peonidin-3-O-galactoside, 3-(4-hydroxyphenyl) propionic acid, and unmetabolized anthocyanin cyanidin-3-O-galactoside were associated with lower plasma total cholesterol and LDL-C in the aronia group. Aronia consumption did not change blood pressure or biomarkers of inflammation and oxidative stress. Aronia polyphenols reduced total and LDL-C in former smokers but did not improve biomarkers of oxidative stress and chronic inflammation. The cholesterol-lowering activity of aronia extract was most closely associated with urinary levels of cyanidin-3-O-galactoside and peonidin-3-O-galactoside, its methylated metabolite. This trial was registered at ClinicalTrials.gov as NCT01541826.


Assuntos
LDL-Colesterol/sangue , Inflamação , Estresse Oxidativo/efeitos dos fármacos , Photinia/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Fumar , Adulto , Antocianinas/farmacologia , Antioxidantes/farmacologia , Disponibilidade Biológica , Biomarcadores/sangue , Pressão Sanguínea , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/etiologia , Colesterol/sangue , Feminino , Frutas/química , Galactosídeos/farmacologia , Humanos , Inflamação/etiologia , Masculino , Fumantes , Fumar/efeitos adversos
5.
Food Chem ; 211: 860-8, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27283706

RESUMO

A single-dose pharmacokinetic trial was conducted in 6 adults to evaluate the bioavailability of anthocyanins and colonic polyphenol metabolites after consumption of 500mg aronia berry extract. UHPLC-MS methods were developed to quantitate aronia berry polyphenols and their metabolites in plasma and urine. While anthocyanins were bioavailable, microbial phenolic catabolites increased ∼10-fold more than anthocyanins in plasma and urine. Among the anthocyanins, cyanidin-3-O-galactoside was rapidly metabolized to peonidin-3-O-galactoside. Aronia polyphenols were absorbed and extensively metabolized with tmax of anthocyanins and other polyphenol catabolites from 1.0h to 6.33h in plasma and urine. Despite significant inter-individual variation in pharmacokinetic parameters, concentrations of polyphenol metabolites in plasma and urine at 24h were positively correlated with total AUC in plasma and urine (r=0.93, and r=0.98, respectively). This suggests that fasting blood and urine collections could be used to estimate polyphenol bioavailability and metabolism after aronia polyphenol consumption.


Assuntos
Antocianinas/metabolismo , Colo/metabolismo , Frutas/metabolismo , Photinia/metabolismo , Extratos Vegetais/metabolismo , Polifenóis/metabolismo , Adulto , Antocianinas/administração & dosagem , Disponibilidade Biológica , Ingestão de Alimentos/fisiologia , Feminino , Frutas/química , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Extratos Vegetais/administração & dosagem , Adulto Jovem
6.
J Med Food ; 18(12): 1299-306, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26566121

RESUMO

Hyperlipidemia and inflammation contribute to the development of atherosclerotic lesions. Our objective was to determine antiatherogenic effect of edible blue-green algae (BGA) species, that is, Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP), in apolipoprotein E knockout (ApoE(-/-)) mice, a well-established mouse model of atherosclerosis. Male ApoE(-/-) mice were fed a high-fat/high-cholesterol (HF/HC, 15% fat and 0.2% cholesterol by wt) control diet or a HF/HC diet supplemented with 5% (w/w) of NO or SP powder for 12 weeks. Plasma total cholesterol (TC) and triglycerides (TG) were measured, and livers were analyzed for histology and gene expression. Morphometric analysis for lesions and immunohistochemical analysis for CD68 were conducted in the aorta and the aortic root. NO supplementation significantly decreased plasma TC and TG, and liver TC, compared to control and SP groups. In the livers of NO-fed mice, less lipid droplets were present with a concomitant decrease in fatty acid synthase protein levels than the other groups. There was a significant increase in hepatic low-density lipoprotein receptor protein levels in SP-supplemented mice than in control and NO groups. Quantification of aortic lesions by en face analysis demonstrated that both NO and SP decreased aortic lesion development to a similar degree compared with control. While lesions in the aortic root were not significantly different between groups, the CD68-stained area in the aortic root was significantly lowered in BGA-fed mice than controls. In conclusion, both NO and SP supplementation decreased the development of atherosclerotic lesions, suggesting that they may be used as a natural product for atheroprotection.


Assuntos
Aterosclerose/prevenção & controle , Suplementos Nutricionais , Lipídeos/sangue , Fígado , Nostoc , Spirulina , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aorta , Apolipoproteínas E/genética , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Dieta Hiperlipídica , Gorduras na Dieta/efeitos adversos , Fígado/metabolismo , Masculino , Camundongos Knockout , Receptores de LDL/metabolismo
7.
J Med Food ; 18(11): 1214-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26161942

RESUMO

We previously demonstrated that Nostoc commune var. sphaeroids Kützing (NO), a blue-green alga (BGA), exerts a hypolipidemic effect in vivo and its lipid extract regulates the expression of genes involved in cholesterol and lipid metabolism in vitro. The objective of this study was to investigate whether the hypolipidemic effect of NO is attributed to an algal lipid or a delipidated fraction in vivo compared with Spirulina platensis (SP). Male C57BL/6J mice were fed an AIN-93M diet containing 2.5% or 5% of BGA (w/w) or a lipid extract equivalent to 5% of BGA for 4 weeks to measure plasma and liver lipids, hepatic gene expression, intestinal cholesterol absorption, and fecal sterol excretion. Plasma total cholesterol (TC) was significantly lower in 2.5% and 5% NO-fed groups, while plasma triglyceride (TG) levels were decreased in the 5% NO group compared with controls. However, neither NO organic extract (NOE) nor SP-fed groups altered plasma lipids. Hepatic mRNA levels of sterol regulatory element-binding protein 2, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR), carnitine palmitoyltransferase-1α, and acyl-CoA oxidase 1 were induced in 5% NO-fed mice, while there were no significant changes in hepatic lipogenic gene expression between groups. NO, but not NOE and SP groups, significantly decreased intestinal cholesterol absorption. When HepG2 cells and primary mouse hepatocytes were incubated with NOE and SP organic extract (SPE), there were marked decreases in protein levels of HMGR, low-density lipoprotein receptor, and fatty acid synthase. In conclusion, the nonlipid fraction of NO exerts TC and TG-lowering effects primarily by inhibiting intestinal cholesterol absorption and by increasing hepatic fatty acid oxidation, respectively.


Assuntos
Produtos Biológicos/farmacologia , Colesterol/metabolismo , Hipolipemiantes/farmacologia , Absorção Intestinal/efeitos dos fármacos , Lipídeos/farmacologia , Fígado/efeitos dos fármacos , Nostoc commune , Acil Coenzima A/metabolismo , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Colesterol/sangue , Suplementos Nutricionais , Ácido Graxo Sintases/metabolismo , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Lipoproteínas LDL/sangue , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Nostoc commune/química , Extratos Vegetais/farmacologia , RNA Mensageiro/metabolismo , Receptores de LDL/metabolismo , Spirulina , Triglicerídeos/sangue
8.
Br J Nutr ; 113(11): 1697-703, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25899149

RESUMO

Obesity is associated with an increased risk of metabolic abnormalities, such as hyperlipidaemia and hyperglycaemia. We investigated whether polyphenol-rich blackcurrant extract (BCE) can prevent high fat/high cholesterol (HF/HC) diet-induced metabolic disturbances in mice. Male C57BL/6J mice were fed a modified AIN-93M diet containing HF/HC (16% fat, 0·25% cholesterol, w/w) or the same diet supplemented with 0·1% BCE (w/w) for 12 weeks. There were no differences in total body weight and liver weight between groups. Plasma total cholesterol (TC) and glucose levels were significantly lower in BCE group than in controls, while plasma TAG levels were not significantly different. There was a decreasing trend in hepatic TAG levels, and histological evaluation of steatosis grade was markedly lower in the livers of mice fed BCE. Although the mRNA levels of major regulators of hepatic cholesterol metabolism, i.e. 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) and LDL receptor (LDLR), were not significantly altered by BCE supplementation, protein expression of mature sterol-regulatory element-binding protein and LDLR was significantly increased with no change in HMGR protein. The expression of proprotein convertase subtilisin/kexin type 9 that facilitates LDLR protein degradation, as well as one of its transcriptional regulators, i.e. hepatocyte nuclear factor 4α, was significantly decreased in the livers of mice fed BCE. Taken together, BCE supplementation decreased plasma TC and glucose, and inhibited liver steatosis, suggesting that this berry may be consumed to prevent metabolic dysfunctions induced by diets high in fat and cholesterol.


Assuntos
Colesterol na Dieta/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Ribes/química , Animais , Glicemia , Peso Corporal , Colesterol na Dieta/administração & dosagem , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Suplementos Nutricionais , Fígado Gorduroso/complicações , Fígado Gorduroso/prevenção & controle , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Hiperglicemia/complicações , Hiperglicemia/prevenção & controle , Hiperlipidemias/complicações , Hiperlipidemias/prevenção & controle , Hipoglicemiantes/análise , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/prevenção & controle , Tamanho do Órgão , Extratos Vegetais/análise , Polifenóis/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Triglicerídeos/sangue
9.
J Med Food ; 18(4): 476-82, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25198411

RESUMO

Berry consumption can prevent bone loss. However, the effects of different berries with distinct anthocyanin composition have not been thoroughly examined. The present study compared the effects of blueberry, blackberry, and black currant on bone health using a mouse model of diet-induced obesity. To investigate the effect of different berry supplements against a high-fat (HF) diet in vivo, 40 HF diet-induced obese (DIO) C57BL mice were assigned into four groups and fed a HF diet (35% w/w) with or without berry supplementation for 12 weeks (n=10). We measured adipose tissue mass (epididymal and retroperitoneal), plasma antioxidant, bone-related biomarkers, femur bone mineral density (BMD), and bone mineral content (proximal and distal). Adipose masses were negatively correlated with proximal BMD, but positively associated with plasma superoxide dismutase (SOD) concentrations (P<.001). Berry supplementation did not change the plasma ferric reducing antioxidant power, SOD, and insulin-like growth factor-1. However, the black currant group exhibited greater plasma alkaline phosphatase compared with the control group (P<.05). BMD in the distal epiphysis was significantly different between the blueberry and blackberry group (P<.05). However, berry supplementation did not affect bone mass compared with control. The present study demonstrates a negative relationship between fat mass and bone mass. In addition, our findings suggest that the anthocyanin composition of berries will affect bone turnover, warranting further research to investigate the underlying mechanisms.


Assuntos
Mirtilos Azuis (Planta)/química , Densidade Óssea/efeitos dos fármacos , Obesidade/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Ribes/química , Rubus/química , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Antocianinas/administração & dosagem , Antocianinas/química , Antocianinas/isolamento & purificação , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Suplementos Nutricionais/análise , Frutas/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/fisiopatologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
10.
Br J Nutr ; 112(11): 1797-804, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25328157

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is significantly associated with hyperlipidaemia and oxidative stress. We have previously reported that astaxanthin (ASTX), a xanthophyll carotenoid, lowers plasma total cholesterol and TAG concentrations in apoE knockout mice. To investigate whether ASTX supplementation can prevent the development of NAFLD in obesity, male C57BL/6J mice (n 8 per group) were fed a high-fat diet (35%, w/w) supplemented with 0, 0.003, 0.01 or 0.03% of ASTX (w/w) for 12 weeks. The 0.03% ASTX-supplemented group, but not the other groups, exhibited a significant decrease in plasma TAG concentrations, suggesting that ASTX at a 0.03% supplementation dosage exerts a hypotriacylglycerolaemic effect. Although there was an increase in the mRNA expression of fatty acid synthase and diglyceride acyltransferase 2, the mRNA levels of acyl-CoA oxidase 1, a critical enzyme in peroxisomal fatty acid ß-oxidation, exhibited an increase in the 0.03% ASTX-supplemented group. There was a decrease in plasma alanine transaminase (ALT) and aspartate transaminase (AST) concentrations in the 0.03% ASTX-supplemented group. There was a significant increase in the hepatic mRNA expression of nuclear factor erythroid 2-related factor 2 and its downstream genes, which are critical for endogenous antioxidant mechanism, in the 0.03% ASTX-supplemented group. Furthermore, there was a significant decrease in the mRNA abundance of IL-6 in the primary splenocytes isolated from the 0.03% ASTX-supplemented group upon lipopolysaccharide (LPS) stimulation when compared with that in the splenocytes isolated from the control group. In conclusion, ASTX supplementation lowered the plasma concentrations of TAG, ALT and AST, increased the hepatic expression of endogenous antioxidant genes, and rendered splenocytes less sensitive to LPS stimulation. Therefore, ASTX may prevent obesity-associated metabolic disturbances and inflammation.


Assuntos
Fígado/efeitos dos fármacos , Obesidade/sangue , Obesidade/tratamento farmacológico , Triglicerídeos/sangue , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Alanina Transaminase/sangue , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases/sangue , Dieta Hiperlipídica , Suplementos Nutricionais , Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Xantofilas/administração & dosagem , Xantofilas/farmacologia
11.
J Nutr Biochem ; 25(10): 1019-25, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25034502

RESUMO

Obesity is closely associated with chronic, low-grade inflammation. We investigated if polyphenol-rich blackcurrant extract (BCE) can prevent inflammation in vivo. Male C57BL/6J mice were fed a modified AIN-93M control diet containing high fat/high cholesterol (16% fat, 0.25% cholesterol by weight) or the control diet supplemented with 0.1% BCE (wt/wt) for 12 weeks. In BCE-fed mice, the percentage of body weight and adipocyte size of the epididymal fat were significantly lower than those of control mice. There were fewer crown-like structures (CLS) with concomitant decreases in F4/80, cluster of differentiation 68 and inhibitor of nuclear factor κB kinase ε (IKKε) mRNA in the epididymal adipose of BCE-fed mice. F4/80 and IKKε mRNA levels were positively correlated with CLS number. In the skeletal muscle of mice fed with BCE, mRNA expression of genes involved in energy expenditure and mitochondrial biogenesis, including PPARα, PPARδ, UCP-2, UCP-3 and mitochondrial transcription factor A, were significantly increased. When splenocytes from BCE-fed mice were stimulated by lipopolysaccharides, tumor necrosis factor α and interleukin-1ß mRNA were significantly lower than control splenocytes. Together, the results suggest that BCE supplementation decreases obesity-induced inflammation in adipose tissue and splenocytes, at least in part, by modulating energy metabolism in skeletal muscle.


Assuntos
Inflamação/prevenção & controle , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Ribes/química , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Antocianinas/análise , Antocianinas/farmacologia , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Peso Corporal , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica/efeitos adversos , Repressão Epigenética , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/tratamento farmacológico , Inflamação/etiologia , Interleucina-1beta/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Renovação Mitocondrial , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/complicações , Obesidade/tratamento farmacológico , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Extratos Vegetais/análise , Polifenóis/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Desacopladora 2 , Proteína Desacopladora 3
12.
Nutr Res ; 33(5): 406-13, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23684442

RESUMO

We hypothesized that a polyphenol-rich chokeberry extract (CBE) would modulate hepatic lipid metabolism and improve antioxidant function in apolipoprotein E knockout (apoE(-/-)) mice. ApoE(-/-) mice were fed diets containing 15% fat with 0.2% cholesterol alone or supplemented with 0.005% or 0.05% CBE for 4 weeks. CBE polyphenol content was determined by the total phenols, 4-dimethylaminocinnamaldehyde, and ultra high-performance liquid chromatography-mass spectrometry methods. The 0.05% CBE diet provided mice with mean daily doses of 1.2 mg gallic acid equivalents of total phenols, 0.19 mg anthocyanins, 0.17 mg phenolic acids, 0.06 mg proanthocyanidins (as catechin-equivalents), and 0.02 mg flavonols. The 0.05% CBE group had 12% less plasma total cholesterol concentrations than the control. Despite the hypocholesterolemic effect of CBE, hepatic mRNA levels of low-density lipoprotein receptor, hydroxyl-3-methylglutaryl coenzyme A reductase and cholesterol 7α-hydroxylase in CBE-fed mice were not significantly different from controls. Dietary CBE did not alter hepatic lipid content or the hepatic expression of genes involved in lipogenesis and fatty acid ß-oxidation such as fatty acid synthase, carnitine palmitoyltransferase 1 and acyl-CoA oxidase. Plasma paraoxonase and catalase activities were significantly increased in mice fed 0.05% CBE. Both CBE diets increased hepatic glutathione peroxidase (GPx) activity but the 0.05% CBE group had 24% less proximal intestine GPx activity relative to controls. Thus, dietary CBE lowered total cholesterol and improved plasma and hepatic antioxidant function at nutritionally-relevant doses in apoE(-/-) mice. Furthermore, the CBE cholesterol-lowering mechanism in apoE(-/-) mice was independent of hepatic expression of genes involved in cholesterol metabolism.


Assuntos
Antioxidantes/metabolismo , Apolipoproteínas E/genética , Colesterol/sangue , Photinia/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Cromatografia Líquida de Alta Pressão , Cinamatos/farmacologia , Dieta Hiperlipídica , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro
13.
J Nutr Biochem ; 24(9): 1564-70, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23517916

RESUMO

Black chokeberry (Aronia melanocarpa) is a rich source of polyphenols. The hypolipidemic effects of polyphenol-rich black chokeberry extract (CBE) have been reported, but underlying mechanisms have not been well characterized. We investigated the effect of CBE on the expression of genes involved in intestinal lipid metabolism. Caco-2 cells were incubated with 50 or 100 µg/ml of CBE for 24 h for quantitative realtime polymerase chain reaction analysis. Expression of genes for cholesterol synthesis (3-hydroxy-3-methylglutaryl coenzyme A reductase and sterol regulatory element binding protein 2), apical cholesterol uptake (Niemann-Pick C1 Like 1 and scavenger receptor class B Type 1) and basolateral cholesterol efflux [ATP-binding cassette transporter A1 (ABCA1)] was significantly decreased by CBE compared with control. Western blot analysis confirmed that CBE inhibited expression of these proteins. In contrast, CBE markedly induced mRNA and/or protein levels of ABCG5 and ABCG8 that mediate apical cholesterol efflux to the intestinal lumen. Furthermore, CBE significantly increased mRNA and protein levels of low-density lipoprotein (LDL) receptor, and cellular LDL uptake. Expression of genes involved in lipid metabolism and lipoprotein assembly, including sterol regulatory element-binding protein 1c, fatty acid synthase and acyl-CoA oxidase 1, was significantly decreased by CBE in a dose-dependent manner. Concomitantly, CBE significantly increased sirtuin 1, 3 and 5 mRNA levels, while it decreased SIRT-2. Our data suggest that hypolipidemic effects of CBE may be attributed, at least in part, to increased apical efflux of LDL-derived cholesterol and to decreased chylomicron formation in the intestine; and specific isoforms of SIRT may play an important role in this process.


Assuntos
Colesterol/biossíntese , Regulação da Expressão Gênica , Intestinos/efeitos dos fármacos , Photinia/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Transportador 1 de Cassete de Ligação de ATP/antagonistas & inibidores , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Células CACO-2 , Ácido Graxo Sintases/metabolismo , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
14.
J Nutr ; 141(9): 1611-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21734060

RESUMO

Dyslipidemia and oxidative stress contribute to atherogenesis. Astaxanthin (ASTX) is a red-colored carotenoid well known for its high antioxidant capacity. However, its effects on lipid metabolism and antioxidant defense mechanisms have received only limited investigation. We fed male apoE knockout (apoE)(-/-) mice, a mouse model for atherosclerosis, a high-fat (15%)/high-cholesterol (0.2%) diet alone (control) or supplemented with ASTX-rich Hematococcus pluvialis extract (0.03% ASTX by weight) for 4 wk. ASTX-fed apoE(-/-) mice had significantly lower plasma total cholesterol and TG concentrations than controls, but body weight and plasma alanine aminotransferase and aspartate aminotransferase did not differ between the groups. qRT-PCR analysis demonstrated significantly greater mRNA levels of LDL receptor (LDLR), 3-hydroxy-3-methylglutaryl CoA reductase, and sterol regulatory element binding protein 2 (SREBP-2) and greater mature SREBP-2 protein in the livers of ASTX-fed mice, indicating that increased LDLR expression may be responsible for the hypocholesterolemic effect of ASTX. Hepatic lipogenic gene expression was not altered, but carnitine palmitoyl transferase 1, acetyl-CoA carboxylase ß, and acyl-CoA oxidase mRNA abundance were significantly increased by ASTX supplementation, suggesting the TG-lowering effect of ASTX may be due to increased fatty acid ß-oxidation in the liver. Expression of the nuclear factor E2 related factor 2-responsive endogenous antioxidant gene also was induced with concomitantly lower glutathione disulfide levels in the livers of ASTX-fed apoE(-/-) mice compared to controls. In conclusion, these results suggest that supplementation of ASTX-rich H. pluvialis extract improves cholesterol and lipid metabolism as well as antioxidant defense mechanisms, all of which could help mitigate the progression of atherosclerosis.


Assuntos
Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Clorófitas/química , Lipídeos/sangue , Animais , Antioxidantes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo , Xantofilas/química , Xantofilas/farmacologia
15.
J Med Food ; 13(1): 6-12, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20136430

RESUMO

The anticancer effects of chitosan-added kimchi were investigated by using an in vitro cellular system with HT-29 human colon carcinoma cells. Two different kinds of chitosan-soluble chitosan with a 90% degree of deacetylation and 3 cps viscosity and nonsoluble chitosan with a 95% degree of deacetylation and 22 cps viscosity-were used as sub-ingredients to increase anticancer effects of kimchi. The soluble chitosan-added kimchi (SK) and nonsoluble chitosan-added kimchi (NK) were stronger growth inhibitors in HT-29 cells than the control kimchi (CK) according to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the growth inhibition test. Treatment with SK and NK induced apoptosis, as determined by 4,6-diamidino-2-phenylindole staining, and resulted in the up-regulation of Bax expression and down-regulation of Bcl-2, cIAP-1, cellular inhibitor of apoptosis-2, cyclooxygenase-2, inhibitory nitric oxide synthase, and nuclear factor kappaB (NF-kappaB) expressions when compared to CK. The antiproliferative and anti-apoptotic effects appeared to be more pronounced in the cells treated with NK. The antiproliferative effects of the chitosan-added kimchi appeared to be associated with the induction of apoptosis through NF-kappaB or an NF-kappaB-dependent pathway. These results suggest that chitosan has potential to be a valuable active ingredient in functional kimchi products with anticancer effects.


Assuntos
Antineoplásicos/farmacologia , Carcinoma/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Quitosana/farmacologia , Neoplasias do Colo/tratamento farmacológico , Verduras , Acetilação , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma/metabolismo , Quitosana/uso terapêutico , Neoplasias do Colo/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dieta , Fermentação , Alimentos Fortificados , Expressão Gênica , Células HT29 , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Viscosidade , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA