Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36868693

RESUMO

The roots of Paeonia lactiflora Pall., (Paeoniae Radix, PL) are a well-known herbal remedy used to treat fever, rheumatoid arthritis, systemic lupus erythematosus, hepatitis, and gynecological disorders in East Asia. Here we evaluated the genetic toxicity of PL extracts (as a powder [PL-P] and hot-water extract [PL-W]) in accordance with the Organization for Economic Co-operation and Development guidelines. The Ames test revealed that PL-W was not toxic to S. typhimurium strains and E. coli in absence and presence of the S9 metabolic activation system at concentrations up to 5000 µg/plate, but PL-P produced a mutagenic response to TA100 in the absence of S9 mix. PL-P was cytotoxic in in vitro chromosomal aberrations (more than a 50 % decrease in cell population doubling time), and it increased the frequency of structural and numerical aberrations in absence and presence of S9 mix in a concentration-dependent manner. PL-W was cytotoxic in the in vitro chromosomal aberration tests (more than a 50 % decrease in cell population doubling time) only in the absence of S9 mix, and it induced structural aberrations only in the presence of S9 mix. PL-P and PL-W did not produce toxic response during the in vivo micronucleus test after oral administration to ICR mice and did not induce positive results in the in vivo Pig-a gene mutation and comet assays after oral administration to SD rats. Although PL-P showed genotoxic in two in vitro tests, the results from physiologically relevant in vivo Pig-a gene mutation and comet assays illustrated that PL-P and PL-W does not cause genotoxic effects in rodents.


Assuntos
Aberrações Cromossômicas , Paeonia , Extratos Vegetais , Animais , Camundongos , Ratos , Dano ao DNA , Escherichia coli , Camundongos Endogâmicos ICR , Paeonia/toxicidade , Ratos Sprague-Dawley , Extratos Vegetais/toxicidade , Raízes de Plantas/toxicidade , Salmonella typhimurium
2.
Mitochondrial DNA B Resour ; 4(2): 3404-3406, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33366014

RESUMO

Aconitum coreanum (H. Lév.) Rapaics listed in the Korean Red List is a medicinal herb. We presented complete chloroplast genome, which is 157,024 bp long and has four subregions: 87,637 bp of large single-copy and 16,901 bp of small single-copy regions, which are separated by two 26,243 bp inverted repeat regions including 132 genes (86 protein-coding genes, 8 rRNAs, and 37 tRNAs). The overall GC content of the chloroplast is 38.0%. Phylogenetic trees show that A. coreanum occupied a basal position at subgenus Aconitum clade and two A. coreanum isolated from midwestern and eastern regions of Korea are clustered together.

3.
J Microbiol Biotechnol ; 23(1): 47-55, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23314367

RESUMO

Metabolic alterations of Cordyceps bassiana mycelium were investigated under the following culture medium and light conditions: dextrose agar supplemented with 0.5% yeast extract (SDAY) medium with light (SL), SDAY medium without light (SD), nut medium without light (ND), and iron-supplemented SDAY medium without light (FD). The levels of asparagine, aspartic acid, glutamic acid, glutamine, histidine, lysine, ornithine, and proline were significantly higher under SD and SL conditions. The levels of most of the alcohols, saturated fatty acids, unsaturated fatty acids, fatty acid esters, sterols, and terpenes were higher under the ND condition than in the other conditions, but beauvericin was not detectable under the ND condition. The FD condition was favorable for the enhanced production of aminomalonic acid, malic acid, mannonic acid, and erythritol. Thus, the metabolic characteristics of C. bassiana can be manipulated by varying the cultivation conditions, rendering this fungus potentially favorable as a nutraceutical and medicinal resource.


Assuntos
Cordyceps/efeitos dos fármacos , Cordyceps/efeitos da radiação , Meios de Cultura/química , Depsipeptídeos/biossíntese , Luz , Cordyceps/citologia , Cordyceps/metabolismo , Metaboloma , Micélio/efeitos dos fármacos , Micélio/metabolismo , Micélio/efeitos da radiação
4.
J AOAC Int ; 96(6): 1266-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24645503

RESUMO

Ginseng roots are an important herbal resource worldwide, and the adulteration of ginseng with age is recognized as a serious problem. It is therefore crucial to develop objective criteria or standard protocols for differentiating ginseng root samples according to their cultivation age. The reported study used GC/MS combined with multivariate statistical analysis with variable selection to obtain metabolic profiling and an optimal partial least squares-discriminant analysis (PLS-DA) model for the differentiation of ginseng according to cultivation age. Relative levels of various metabolites, such as amino acids, alcohols, fatty acids, organic acids, and sugars, were measured for various ginseng cultivation ages. Increasing cultivation age resulted in the production of higher levels of panaxynol and panaxydol, which are active polyacetylene compounds in ginseng. In addition, optimized PLS-DA models for the prediction of ginseng age were obtained by selecting variables based on a variable importance in the projection cut-off value of 1.3. Proline, glucaric acid, mannose, gluconic acid, glucuronic acid, myoinositol, panaxydol, and panaxynol are suggested as key and relevant compounds with which to differentiate the age of ginseng samples. The findings of this study suggest that GC/MS-based metabolic profiling can be used to differentiate ginseng samples according to cultivation age.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Panax/química , Raízes de Plantas/química , Ácidos/análise , Álcoois/análise , Aminoácidos/análise , Análise de Variância , Carboidratos/análise , Medicamentos de Ervas Chinesas/química , Metabolômica/métodos , Análise Multivariada , Extratos Vegetais/química , Poli-Inos/química , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA