Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 3167-3186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585473

RESUMO

Introduction: Due to its distinct advantage of non-invasive application in treatment, photothermal therapy (PTT) is being studied by many researchers to reduce the need for surgical incisions. It is characterized by the injection of nanoparticles into biological tissue as photothermal agents (PTAs) which diffuse within the tissue. In this study, the diffusion behavior of various doses of gold nanoparticles (AuNPs) injected into tumor tissues is analyzed and the effectiveness of PTT at each elapsed time after injection is confirmed by numerical analysis. Methods: The diffusion behavior of AuNPs within biological tissues is assessed using the convection-diffusion equation, while the temperature distribution is determined using the Pennes bioheat transfer equation. In addition, the effect of the diffusion behavior of AuNPs on the effectiveness of PTT is quantitatively confirmed by analyzing the temperature distribution in the medium through the apoptotic variable. Numerical simulation parameters are selected with doses ranging from 100 to 400 µg/mL, elapsed time after injection from 1 min to 24 h, and laser power ranging from 0 to 1 W. Results: After evaluating PTT's efficacy in every situation, it was discovered that a dosage of 100-300 µg/mL produced the best therapeutic result, with the highest impact occurring 12 hours after injection. In contrast, when the dosage was 400 µg/mL, the highest therapeutic effect was achieved after 18 hours post-injection. Additionally, it was discovered that the ideal laser power at each injection dose was 0.22, 0.14, 0.12, and 0.12 W, respectively. Conclusion: The conditions required to achieve the optimal treatment effect at each dosage, presented here, are expected to accelerate the commercialization of PTT.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Fototerapia , Ouro , Terapia Fototérmica , Linhagem Celular Tumoral
2.
Sci Rep ; 13(1): 12135, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495612

RESUMO

Lasers are used in various fields, however, in the medical field, they are mainly used for incision or chemotherapy. Photothermal therapy (PTT) is an anti-cancer treatment technique that uses lasers and the photothermal effect to increase the temperature of tumor tissue and induce its death. In this study, the therapeutic effect of PTT using gold nanoparticles as a photothermal converter was analyzed numerically for the occurrence of squamous cell carcinoma inside a skin section consisting four layers. Numerical modeling was implemented to calculate the temperature distribution inside the biological tissue while varying the distribution radius of gold nanoparticles in the tumor tissue, the number of injections, and the intensity of the irradiating laser. For the given situation, the optimal treatment effect was observed when the distribution radius ratio of the injected gold nanoparticles (GNPs) was 1, the number of injections was 7, and the intensity of the irradiated laser was 52 mW. Three apoptotic variables were used to quantitively evaluate the effect of PTT in each case and thus suggest the optimal treatment effect. However, although the temperature range at which apoptosis occurs is known, the maintenance of that temperature range is still under research and the temporal influence of apoptosis remains to be determined.


Assuntos
Carcinoma de Células Escamosas , Nanopartículas Metálicas , Nanopartículas , Humanos , Ouro/farmacologia , Terapia Fototérmica , Rádio (Anatomia) , Nanopartículas Metálicas/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Fototerapia/métodos , Linhagem Celular Tumoral
3.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430744

RESUMO

Photothermal therapy is a treatment technique that has attracted attention as an alternative to conventional surgical techniques. It is based on the photothermal effect, wherein light energy is converted into thermal energy, and facilitates rapid recovery after treatment. This study employed various laser irradiation conditions and presented conditions with the optimal treatment effects through a numerical analysis based on heat transfer. A skin layer comprising four stages containing squamous cell carcinoma was targeted, and the treatment effect was confirmed by varying the heating conditions of the laser and volume fraction of gold nanoparticles. The therapeutic effect was confirmed through both the apoptosis retention ratio, which quantitatively estimated the degree of maintenance of the apoptosis temperature range within the tumor, and the thermal hazard retention value, which quantitatively calculates the amount of thermal damage to the surrounding normal tissues. Finally, the optimal treatment conditions were determined based on the laser intensity, cooling time ratio, and volume fraction of injected gold nanoparticles through numerical analysis.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Terapia Fototérmica , Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Lasers , Hipertermia Induzida/métodos
4.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682607

RESUMO

The photothermal effect refers to a phenomenon in which light energy is converted into heat energy, and in the medical field, therapeutics based on this phenomenon are used for anticancer treatment. A new treatment technique called photothermal therapy kills tumor tissue through a temperature increase and has the advantages of no bleeding and fast recovery. In this study, the results of photothermal therapy for squamous cell carcinoma in the skin layer were analyzed numerically for different laser profiles, intensities, and radii and various concentrations of gold nanoparticles (AuNPs). According to the heat-transfer theory, the temperature distribution in the tissue was calculated for the conditions under which photothermal therapy was performed, and the therapeutic effect was quantitatively confirmed through three apoptotic variables. In addition, the laser intensity and the volume fraction of AuNPs were optimized, and the results provide useful criteria for optimizing the treatment effects in photothermal therapy.


Assuntos
Ouro , Nanopartículas Metálicas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Nanopartículas Metálicas/uso terapêutico , Fototerapia/métodos , Terapia Fototérmica , Temperatura
5.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188055

RESUMO

Plant growth-promoting rhizobacteria play vital roles not only in plant growth, but also in reducing biotic/abiotic stress. Sphingomonas panacis DCY99T is isolated from soil and root of Panax ginseng with rusty root disease, characterized by raised reddish-brown root and this is seriously affects ginseng cultivation. To investigate the relationship between 159 sequenced Sphingomonas strains, pan-genome analysis was carried out, which suggested genomic diversity of the Sphingomonas genus. Comparative analysis of S. panacis DCY99T with Sphingomonas sp. LK11 revealed plant growth-promoting potential of S. panacis DCY99T through indole acetic acid production, phosphate solubilizing, and antifungal abilities. Detailed genomic analysis has shown that S. panacis DCY99T contain various heavy metals resistance genes in its genome and the plasmid. Functional analysis with Sphingomonas paucimobilis EPA505 predicted that S. panacis DCY99T possess genes for degradation of polyaromatic hydrocarbon and phenolic compounds in rusty-ginseng root. Interestingly, when primed ginseng with S. panacis DCY99T during high concentration of iron exposure, iron stress of ginseng was suppressed. In order to detect S. panacis DCY99T in soil, biomarker was designed using spt gene. This study brings new insights into the role of S. panacis DCY99T as a microbial inoculant to protect ginseng plants against rusty root disease.


Assuntos
Tolerância a Medicamentos/genética , Genoma Bacteriano , Ferro/metabolismo , Panax/microbiologia , Sphingomonas/genética , Sphingomonas/fisiologia , DNA Bacteriano , Genes Bacterianos/genética , Tamanho do Genoma , Hidroxibenzoatos , Ferro/toxicidade , Metais Pesados , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Microbiologia do Solo , Sphingomonas/efeitos dos fármacos , Sphingomonas/isolamento & purificação , Estresse Fisiológico
6.
J Plant Physiol ; 208: 17-25, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27889517

RESUMO

Pectin methylesterases (PMEs, EC 3.1.1.11) belonging to carbohydrate esterase family 8 cleave the ester bond between a galacturonic acid and an methyl group and the resulting change in methylesterification level plays an important role during the growth and development of plants. Optimal pectin methylesterification status in each cell type is determined by the balance between PME activity and post-translational PME inhibition by PME inhibitors (PMEIs). Rice contains 49 PMEIs and none of them are functionally characterized. Genomic sequence analysis led to the identification of rice PMEI28 (OsPMEI28). Recombinant OsPMEI28 exhibited inhibitory activity against commercial PME protein with the highest activities detected at pH 8.5. Overexpression of OsPMEI28 in rice resulted in an increased level of cell wall bound methylester groups and differential changes in the composition of cell wall neutral monosaccharides and lignin content in culm tissues. Consequently, transgenic plants overexpressing OsPMEI28 exhibited dwarf phenotypes and reduced culm diameter. Our data indicate that OsPMEI28 functions as a critical structural modulator by regulating the degree of pectin methylesterification and that an impaired status of pectin methylesterification affects physiochemical properties of the cell wall components and causes abnormal cell extensibility in rice culm tissues.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Regulação Enzimológica da Expressão Gênica , Oryza/enzimologia , Pectinas/metabolismo , Sequência de Aminoácidos , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos , Oryza/citologia , Oryza/genética , Fenótipo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA