Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Microbiol Biotechnol ; 31(4): 559-569, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33746190

RESUMO

As one of the major types of lung cancer, non-small cell lung cancer (NSCLC) accounts for the majority of cancer-related deaths worldwide. Treatments for NSCLC includes surgery, chemotherapy, and targeted therapy. Among the targeted therapies, resistance to inhibitors of the epidermal growth factor receptor (EGFR) is common and remains a problem to be solved. MET (hepatocyte growth factor receptor) amplification is one of the major causes of EGFR-tyrosine kinase inhibitor (TKI) resistance. Therefore, there exists a need to find new and more efficacious therapies. Deoxypodophyllotoxin (DPT) extracted from Anthriscus sylvestris roots exhibits various pharmacological activities including anti-inflammation and anti-cancer effects. In this study we sought to determine the anti-cancer effects of DPT on HCC827GR cells, which are resistant to gefitinib (EGFR-TKI) due to regulation of EGFR and MET and their related signaling pathways. To identify the direct binding of DPT to EGFR and MET, we performed pull-down, ATP-binding, and kinase assays. DPT exhibited competitive binding with ATP against the network kinases EGFR and MET and reduced their activities. Also, DPT suppressed the expression of p-EGFR and p-MET as well as their downstreat proteins p-ErbB3, p-AKT, and p-ERK. The treatment of HCC827GR cells with DPT induced high ROS generation that led to endoplasmic-reticulum stress. Accordingly, loss of mitochondrial membrane potential and apoptosis by multi-caspase activation were observed. In conclusion, these results demonstrate the apoptotic effects of DPT on HCC827GR cells and signify the potential of DPT to serve as an adjuvant anti-cancer drug by simultaneously inhibiting EGFR and MET.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Pulmonares/patologia , Podofilotoxina/análogos & derivados , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Antineoplásicos/farmacologia , Apiaceae/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Gefitinibe , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Podofilotoxina/farmacologia , Transdução de Sinais
2.
Phytomedicine ; 80: 153355, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33039730

RESUMO

BACKGROUND: Lung cancer has the highest incidence and cancer-related mortality of all cancers worldwide. Its treatment is focused on molecular targeted therapy. c-MET plays an important role in the development and metastasis of various human cancers and has been identified as an attractive potential anti-cancer target. Podophyllotoxin (PPT), an aryltetralin lignan isolated from the rhizomes of Podophyllum species, has several pharmacological activities that include anti-viral and anti-cancer effects. However, the mechanism of the anti-cancer effects of PPT on gefitinib-sensitive (HCC827) or -resistant (MET-amplified HCC827GR) non-small cell lung cancer (NSCLC) cells remains unexplored. PURPOSE: In the present study, we investigated the underlying mechanisms of PPT-induced apoptosis in NSCLC cells and found that the inhibition of c-MET kinase activity contributed to PPT-induced cell death. METHODS: The regulation of c-MET by PPT was examined by pull-down assay, ATP-competitive binding assay, kinase activity assay, molecular docking simulation, and Western blot analysis. The cell growth inhibitory effects of PPT on NSCLC cells were assessed using the MTT assay, soft agar assay, and flow cytometry analysis. RESULTS: PPT could directly interact with c-MET and inhibit kinase activity, which further induced the apoptosis of HCC827GR cells. In contrast, PPT did not significantly affect EGFR kinase activity. PPT significantly inhibited the cell viability of HCC827GR cells, whereas the PPT-treated HCC827 cells showed a cell viability of more than 80%. PPT dose-dependently induced G2/M cell cycle arrest, as shown by the downregulation of cyclin B1 and cdc2, and upregulation of p27 expression in HCC827GR cells. Furthermore, PPT treatment induced Bad expression and downregulation of Mcl-1, survivin, and Bcl-xl expression, subsequently activating multi-caspases. PPT thereby induced caspase-dependent apoptosis in HCC827GR cells. CONCLUSION: These results suggest the potential of PPT as a c-MET inhibitor to overcome tyrosine kinase inhibitor resistance in lung cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Podofilotoxina/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Gefitinibe/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Podofilotoxina/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/metabolismo
3.
Phytother Res ; 34(8): 2032-2043, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32144852

RESUMO

Esophageal cancer (EC) is one of the leading causes to cancer death in the worldwide and major population of EC is esophageal squamous cell carcinoma (ESCC). Still, ESCC-targeted therapy has not been covered yet. In the present study we have identified that Licochalcone B (Lico B) inhibited the ESCC growth by directly blocking the Janus kinase (JAK) 2 activity and its downstream signaling pathway. Lico B suppressed KYSE450 and KYSE510 ESCC cell growth, arrested cell cycle at G2/M phase and induced apoptosis. Direct target of Lico B was identified by kinase assay and verified with in vitro and ex vivo binding. Computational docking model predicted for Lico B interaction to ATP-binding pocket of JAK2. Furthermore, treatment of JAK2 clinical medicine AZD1480 to ESCC cells showed similar tendency with Lico B. Thus, JAK2 downstream signaling proteins phosphorylation of STAT3 at Y705 and S727 as well as STAT3 target protein Mcl-1 expression was decreased with treatment of Lico B. Our results suggest that Lico B inhibits ESCC cell growth, arrests cell cycle and induces apoptosis, revealing the underlying mechanism involved in JAK2/STAT3 signaling pathways after Lico B treatment. It might provide potential role of Lico B in the treatment of ESCC.


Assuntos
Chalconas/uso terapêutico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Janus Quinase 2/antagonistas & inibidores , Apoptose , Linhagem Celular Tumoral , Chalconas/farmacologia , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos
4.
Biomolecules ; 10(2)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070026

RESUMO

Licochalcone D (LCD), a flavonoid isolated from a Chinese medicinal plant Glycyrrhizainflata, has a variety of pharmacological activities. However, the anti-cancer effects of LCD on non-small cell lung cancer (NSCLC) have not been investigated yet. The amplification of MET (hepatocyte growth factor receptor) compensates for the inhibition of epidermal growth factor receptor (EGFR) activity due to tyrosine kinase inhibitor (TKI), leading to TKI resistance. Therefore, EGFR and MET can be attractive targets for lung cancer. We investigated the anti-proliferative and apoptotic effects of LCD in lung cancer cells HCC827 (gefitinib-sensitive) and HCC827GR (gefitinib-resistant) through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, pull-down/kinase assay, cell cycle analysis, Annexin-V/7-ADD staining, reactive oxygen species (ROS) assay, mitochondrial membrane potential (MMP) assay, multi-caspase assay, and Western blot analysis. The results showed that LCD inhibited phosphorylation and the kinase activity of EGFR and MET. In addition, the predicted pose of LCD was competitively located at the ATP binding site. LCD suppressed lung cancer cells growth by blocking cell cycle progression at the G2/M transition and inducing apoptosis. LCD also induced caspases activation and poly (ADP-ribose) polymerase (PARP) cleavage, thus displaying features of apoptotic signals. These results provide evidence that LCD has anti-tumor effects by inhibiting EGFR and MET activities and inducing ROS-dependent apoptosis in NSCLC, suggesting that LCD has the potential to treat lung cancer.


Assuntos
Chalconas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalconas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Phytother Res ; 34(2): 388-400, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31698509

RESUMO

Patients with non-small-cell lung cancer (NSCLC) containing epidermal growth factor receptor (EGFR) amplification or sensitive mutations initially respond to tyrosine kinase inhibitor gefitinib; however, the treatment is less effective over time. Gefitinib resistance mechanisms include MET gene amplification. A therapeutic strategy targeting MET as well as EGFR can overcome resistance to gefitinib. In the present study we identified Echinatin (Ecn), a characteristic chalcone in licorice, which inhibited both EGFR and MET and strongly altered NSCLC cell growth. The antitumor efficacy of Ecn against gefitinib-sensitive or -resistant NSCLC cells with EGFR mutations and MET amplification was confirmed by suppressing cell proliferation and anchorage-independent colony growth. During the targeting of EGFR and MET, Ecn significantly blocked the kinase activity, which was validated with competitive ATP binding. Inhibition of EGFR and MET by Ecn decreases the phosphorylation of downstream target proteins ERBB3, AKT and ERK compared with total protein expression or control. Ecn induced the G2/M cell cycle arrest, and apoptosis via the intrinsic pathway of caspase-dependent activation. Ecn induced ROS production and GRP78, CHOP, DR5 and DR4 expression as well as depolarized the mitochondria membrane potential. Therefore, our results suggest that Ecn is a promising therapeutic agent in NSCLC therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Chalconas/farmacologia , Gefitinibe/farmacologia , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Chaperona BiP do Retículo Endoplasmático , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Glycyrrhiza/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Raízes de Plantas/química , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-met/genética , Quinazolinas/farmacologia
6.
Phytomedicine ; 63: 153014, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31323446

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) gene alterations are associated with sensitization to tyrosine kinase inhibitors such as gefitinib in lung cancer. Some patients suffering from non-small cell lung cancer (NSCLC) have difficulty in treating the cancer due to resistance acquired to gefitinib with MET amplification. Therefore EGFR and MET may be attractive targets for lung cancer therapy. PURPOSE: This study aimed to investigate the anti-cancer activity of Licochalcone (LC)B extracted from Glycyrrhiza inflata, in gefitinib-sensitive or gefitinib-resistant NSCLC cells, and to define its mechanisms. STUDY DESIGN: We investigated the mechanism of action of LCB by targeting EGFR and MET in human NSCLC cells. METHODS: We used the HCC827 and HCC827GR lines as gefitinib-sensitive and -resistant cells respectively, and determined the effects of LCB on both, by performing cell proliferation assay, flow cytometry analysis and Western blotting. Targets of LCB were identified by pull-down/kinase assay and molecular docking simulation. RESULTS: LCB inhibited both EGFR and MET kinase activity by directly binding to their ATP-binding pockets. The ability of this interaction was verified by computational docking and molecular dynamics simulations. LCB suppressed viability and colony formation of both HCC827 and HCC827GR cells while exhibiting no cytotoxicity to normal cells. The induction of G2/M cell-cycle arrest and apoptosis by LCB was confirmed by Annexin V/7-AAD double staining, ER stress and reactive oxygen species induction, mitochondrial membrane potential loss and caspase activation as well as related-proteins regulation. Inhibition of EGFR and MET by LCB decreased ERBB3 and AKT axis activation. CONCLUSION: We provide insights into the LCB-mediated mechanisms involved in reducing cell proliferation and inducing apoptosis in NSCLC cells. This occurs through dual inhibition of EGFR and MET in NSCLC cells regardless of their sensitivity or resistance to gefitinib. LCB may be a promising novel therapeutic medicine for gefitinib-sensitive or resistant NSCLC treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Chalconas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/metabolismo , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalconas/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/química , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Glycyrrhiza/química , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Espécies Reativas de Oxigênio/metabolismo
7.
Acta Biochim Biophys Sin (Shanghai) ; 51(7): 734-742, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31187116

RESUMO

Neferine is an alkaloid extracted from a seed embryo of Nelumbo nucifera and has recently been shown to have anticancer effects in various human cancer cell lines. However, the detailed molecular mechanism of neferine-induced apoptosis has not been elucidated in renal cancer cells. In the present study, we observed that neferine induced inhibition of cell proliferation and apoptosis in Caki-1 cells in a dose-dependent manner by using MT assay and flow cytometry and that neferine-mediated apoptosis was attenuated by pretreatment with N-benzyloxycarbony-Val-Ala-Asp (O-methyl)-fluoromethyketone, a pan-caspase inhibitor. Treatments with neferine dose-dependently downregulated B cell lymphoma-2 (Bcl-2) expression at the transcriptional level determined by reverse transcriptase-polymerase chain reaction. The forced expression of Bcl-2 and p65 attenuated the neferine-mediated apoptosis in Caki-1 cells. In addition, neferine induced apoptosis by downregulating Bcl-2 and p65 expression in the other two kidney cancer cell lines determined by flow cytometry and western blot analysis. Finally, we observed that treatment with neferine induced apoptosis by inhibiting the NF-κB pathway through caspase-mediated cleavage of the p65 protein by western blot analysis. Collectively, this study demonstrated that neferine-induced apoptosis is mediated by the downregulation of Bcl-2 expression via repression of the NF-κB pathway in renal cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição RelA/metabolismo , Apoptose/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação para Baixo/genética , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Transcrição RelA/genética
8.
Int J Mol Sci ; 20(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141929

RESUMO

Deoxypodophyllotoxin (DPT) is a cyclolignan compound that exerts anti-cancer effects against various types of cancers. DPT induces apoptosis and inhibits the growth of breast, brain, prostate, gastric, lung, and cervical tumors. In this study, we sought to determine the effect of DPT on cell proliferation, apoptosis, motility, and tumorigenesis of three colorectal cancer (CRC) cell lines: HT29, DLD1, and Caco2. DPT inhibited the proliferation of these cells. Specifically, the compound-induced mitotic arrest in CRC cells by destabilizing microtubules and activating the mitochondrial apoptotic pathway via regulation of B-cell lymphoma 2 (Bcl-2) family proteins (increasing Bcl-2 associated X (BAX) and decreasing B-cell lymphoma-extra-large (Bcl-xL)) ultimately led to caspase-mediated apoptosis. In addition, DPT inhibited tumorigenesis in vitro, and in vivo skin xenograft experiments revealed that DPT significantly decreased tumor size and tumor weight. Taken together, our results suggest DPT to be a potent compound that is suitable for further exploration as a novel chemotherapeutic for human CRC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Podofilotoxina/análogos & derivados , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/uso terapêutico , Células CACO-2 , Neoplasias Colorretais/metabolismo , Medicamentos de Ervas Chinesas , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Podofilotoxina/farmacologia , Podofilotoxina/uso terapêutico , Moduladores de Tubulina/uso terapêutico
9.
Phytomedicine ; 52: 60-69, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30599913

RESUMO

BACKGROUND: Licochalconce (LC) H is an artificial compound in the course of synthesizing LCC in 2013. So far, few studies on the effects of LCH have been found in the literature. Despite progress in treatment modalities for oral cancer, the cure from cancer has still limitations. PURPOSE: The effects of LCH were investigated on human oral squamous cell carcinoma (OSCC) cells to elucidate its mechanisms. STUDY DESIGN: We explored the mechanism of action of LCH by which it could have effects on JAK2/STAT3 signaling pathway. METHODS: To confirm LCH anti-cancer effect, analyzed were MTT assay, DAPI staining, soft agar, kinase assay, molecular docking simulation, flow cytometry and Western blotting analysis. RESULTS: According to docking and molecular dynamics simulations, the predicted pose of the complex LCH and JAK2 seems reasonable and LCH is strongly bound to active JAK2 with opened activation loop. The LCH inhibitor is surrounded by specific ATP-binding pocket in which it is stabilized by forming hydrogen bonds and hydrophobic interactions. It is shown that LCH plays as a competitive inhibitor in an active state of JAK2. LCH caused a dose-dependent decrease in phosphorylation of JAK2 and STAT3. More interestingly, LCH suppressed JAK2 kinase activity in vitro by its direct binding to the JAK2. LCH significantly inhibited the JAK2/STAT3 signaling pathway, causing the down-regulation of target genes such as Bcl-2, survivin, cyclin D1, p21 and p27. In addition, LCH inhibited cell proliferation and colony formation of OSCC cells in a dose- and time-dependent manner, as well as induction of cell apoptosis through extrinsic and intrinsic pathway. The induction of apoptosis in OSCC cells by LCH was evident in the increased production of ROS, loss of mitochondrial membrane potential, release of cyto c, variation of apoptotic proteins and activation of caspase cascade. CONCLUSION: LCH not only induces apoptosis in OSCC cells through the JAK/STAT3 signaling pathway but also inhibits cell growth. It is proposed that LCH has a promising use for the chemotherapeutic agent of oral cancer.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Chalconas/farmacologia , Janus Quinase 2/metabolismo , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Caspases/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalconas/química , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Neoplasias Bucais/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Survivina/metabolismo
10.
Curr Med Chem ; 26(42): 7623-7640, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29932031

RESUMO

Rational drug design is accomplished through the complementary use of structural biology and computational biology of biological macromolecules involved in disease pathology. Most of the known theoretical approaches for drug design are based on knowledge of the biological targets to which the drug binds. This approach can be used to design drug molecules that restore the balance of the signaling pathway by inhibiting or stimulating biological targets by molecular modeling procedures as well as by molecular dynamics simulations. Type III receptor tyrosine kinase affects most of the fundamental cellular processes including cell cycle, cell migration, cell metabolism, and survival, as well as cell proliferation and differentiation. Many inhibitors of successful rational drug design show that some computational techniques can be combined to achieve synergistic effects.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/química , Sequência de Aminoácidos , Domínio Catalítico , Biologia Computacional/métodos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
11.
Pestic Biochem Physiol ; 105(1): 50-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24238290

RESUMO

To understand the nematicidal mode of action of phytochemicals derived from plant essential oils against the pinewood nematode (Bursaphelenchus xylophilus), we evaluated 97 compounds (49 monoterpenes, 17 phenylpropenes, 16 sesquiterpenes, and 15 sulfides) for their inhibitory effects on B. xylophilus acetylcholinesterases (BxACEs). In the primary inhibition assay using B. xylophilus crude protein, more than 50% BxACE inhibition activity was observed with 3 monoterpenes, (+)-α-pinene, (-)-α-pinene, and 3-carene; 2 phenylpropenes, ο-anisaldehyde, and coniferyl alcohol; and 1 sesquiterpene, cis-nerolidol. Other compounds showed moderate or weak inhibitory activity. The inhibitory activities against 3 recombinant BxACEs were subsequently estimated using the identified active compounds in a primary inhibition assay. (+)-α-Pinene showed the strongest inhibition of BxACE-1 followed by 3-carene, coniferyl alcohol, (-)-α-pinene, o-anisaldehyde, and cis-nerolidol. The half maximal inhibitory concentration (IC50) values of (+)-α-pinene, 3-carene, o-anisaldehyde, cis-nerolidol, and (-)-α-pinene against BxACE-2 were found to be 0.64, 1.41, 8.18, 8.53, 15.28, and 18.03mM, respectively. Coniferyl alcohol showed the strongest inhibition of BxACE-3 followed by (+)-α-pinene and cis-nerolidol.


Assuntos
Antinematódeos/farmacologia , Inibidores da Colinesterase/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Plantas/química , Tylenchida/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Controle de Pragas , Tylenchida/enzimologia
12.
Molecules ; 17(9): 10459-69, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22945026

RESUMO

Commercial plant essential oils obtained from 11 Myrtaceae plant species were tested for their fumigant antifungal activity against Aspergillus ochraceus, A. flavus, and A. niger. Essential oils extracted from Leptospermum petersonii at air concentrations of 56 × 10(-3) mg/mL and 28 × 10(-3) mg/mL completely inhibited the growth of the three Aspergillus species. However, at an air concentration of 14 × 10(-3) mg/mL, inhibition rates of L. petersonii essential oils were reduced to 20.2% and 18.8% in the case of A. flavus and A. niger, respectively. The other Myrtaceae essential oils (56 × 10(-3) mg/mL) only weakly inhibited the fungi or had no detectable affect. Gas chromatography-mass spectrometry analysis identified 16 compounds in L. petersonii essential oil. The antifungal activity of the identified compounds was tested individually by using standard or synthesized compounds. Of these, neral and geranial inhibited growth by 100%, at an air concentration of 56 × 10(-3) mg/mL, whereas the activity of citronellol was somewhat lover (80%). The other compounds exhibited only moderate or weak antifungal activity. The antifungal activities of blends of constituents identified in L. petersonii oil indicated that neral and geranial were the major contributors to the fumigant and antifungal activities.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Leptospermum/química , Myrtaceae/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/crescimento & desenvolvimento , Aspergillus ochraceus/efeitos dos fármacos , Aspergillus ochraceus/crescimento & desenvolvimento , Fumigação , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA