RESUMO
Galangin (3,5,7-trihydroxyflavone) is a polyphenolic compound abundant in honey and medicinal herbs, such as Alpinia officinarum. In this study, we investigated the anti-inflammatory effects of galangin under in vitro and in vivo neuroinflammatory conditions caused by polyinosinic-polycytidylic acid (poly(I:C)), a viral mimic dsRNA analog. Galangin suppressed the production of nitric oxide, reactive oxygen species, and pro-inflammatory cytokines in poly(I:C)-stimulated BV2 microglia. On the other hand, galangin enhanced anti-inflammatory interleukin (IL)-10 production. Galangin also suppressed the expression of pro-inflammatory markers in poly(I:C)-injected mouse brains. Further mechanistic studies showed that galangin inhibited poly(I:C)-induced nuclear factor (NF)-κB activity and phosphorylation of Akt without affecting MAP kinases. Interestingly, galangin increased the expression and transcriptional activity of peroxisome proliferator-activated receptor (PPAR)-γ, known to play an anti-inflammatory role. To investigate whether PPAR-γ is involved in the anti-inflammatory function of galangin, BV2 cells were pre-treated with PPAR-γ antagonist before treatment of galangin. We found that PPAR-γ antagonist significantly blocked galangin-mediated upregulation of IL-10 and attenuated the inhibition of tumor necrosis factor (TNF)-α and IL-6 in poly(I:C)-stimulated microglia. In conclusion, our data suggest that PI3K/Akt, NF-κB, and PPAR-γ play a pivotal role in mediating the anti-inflammatory effects of galangin in poly(I:C)-stimulated microglia.
RESUMO
Ideal hypoparathyroidism animal models are a prerequisite to developing new treatment modalities for this disorder. The purpose of this study was to evaluate the feasibility of a model whereby rats were parathyroidectomized (PTX) using a fluorescent-identification method and the ideal calcium content of the diet was determined. Thirty male rats were divided into surgical sham (SHAM, n = 5) and PTX plus 0, 0.5, and 2% calcium diet groups (PTX-FC (n = 5), PTX-NC (n = 10), and PTX-HC (n = 10), respectively). Serum parathyroid hormone levels decreased to non-detectable levels in all PTX groups. All animals in the PTX-FC group died within 4 days after the operation. All animals survived when supplied calcium in the diet. However, serum calcium levels were higher in the PTX-HC than the SHAM group. The PTX-NC group demonstrated the most representative modeling of primary hypothyroidism. Serum calcium levels decreased and phosphorus levels increased, and bone volume was increased. All animals survived without further treatment and did not show nephrotoxicity including calcium deposits. These findings demonstrate that PTX animal models produced by using the fluorescent-identification method, and fed a 0.5% calcium diet, are appropriate for hypoparathyroidism treatment studies.
Assuntos
Hipoparatireoidismo/sangue , Hipoparatireoidismo/fisiopatologia , Animais , Biomarcadores , Peso Corporal , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Cálcio/sangue , Cálcio/urina , Dieta/efeitos adversos , Modelos Animais de Doenças , Hipoparatireoidismo/diagnóstico , Hipoparatireoidismo/etiologia , Rim/metabolismo , Rim/patologia , Masculino , Hormônio Paratireóideo/sangue , Paratireoidectomia , Fósforo/sangue , Fósforo/urina , Ratos , Microtomografia por Raio-XRESUMO
Stem cells are regarded as an important source of cells which may be used to promote the regeneration of skeletal muscle (SKM) which has been damaged due to defects in the organization of muscle tissue caused by congenital diseases, trauma or tumor removal. In particular, mesenchymal stem cells (MSCs), which require less invasive harvesting techniques, represent a valuable source of cells for stem cell therapy. In the present study, we demonstrated that human tonsil-derived MSCs (T-MSCs) may differentiate into myogenic cells in vitro and that the transplantation of myoblasts and myocytes generated from human T-MSCs mediates the recovery of muscle function in vivo. In order to induce myogenic differentiation, the T-MSC-derived spheres were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F-12 (DMEM/F12) supplemented with 1 ng/ml transforming growth factor-ß, non-essential amino acids and insulintransferrin-selenium for 4 days followed by culture in myogenic induction medium [low-glucose DMEM containing 2% fetal bovine serum (FBS) and 10 ng/ml insulinlike growth factor 1 (IGF1)] for 14 days. The T-MSCs sequentially differentiated into myoblasts and skeletal myocytes, as evidenced by the increased expression of skeletal myogenesis-related markers [including α-actinin, troponin I type 1 (TNNI1) and myogenin] and the formation of myotubes in vitro. The in situ transplantation of T-MSCs into mice with a partial myectomy of the right gastrocnemius muscle enhanced muscle function, as demonstrated by gait assessment (footprint analysis), and restored the shape of SKM without forming teratomas. Thus, T-MSCs may differentiate into myogenic cells and effectively regenerate SKM following injury. These results demonstrate the therapeutic potential of T-MSCs to promote SKM regeneration following injury.
Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/fisiologia , Tonsila Palatina/citologia , Regeneração , Adipogenia , Animais , Biomarcadores , Diferenciação Celular/genética , Regulação da Expressão Gênica , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Músculo Esquelético/citologia , OsteogêneseRESUMO
Tonsil-derived (T-) mesenchymal stem cells (MSCs) display mutilineage differentiation potential and self-renewal capacity and have potential as a banking source. Diabetes mellitus is a prevalent disease in modern society, and the transplantation of pancreatic progenitor cells or various stem cell-derived insulin-secreting cells has been suggested as a novel therapy for diabetes. The potential of T-MSCs to trans-differentiate into pancreatic progenitor cells or insulin-secreting cells has not yet been investigated. We examined the potential of human T-MSCs to trans-differentiate into pancreatic islet cells using two different methods based on ß-mercaptoethanol and insulin-transferin-selenium, respectively. First, we compared the efficacy of the two methods for inducing differentiation into insulin-producing cells. We demonstrated that the insulin-transferin-selenium method is more efficient for inducing differentiation into insulin-secreting cells regardless of the source of the MSCs. Second, we compared the differentiation potential of two different MSC types: T-MSCs and adipose-derived MSCs (A-MSCs). T-MSCs had a differentiation capacity similar to that of A-MSCs and were capable of secreting insulin in response to glucose concentration. Islet-like clusters differentiated from T-MSCs had lower synaptotagmin-3, -5, -7, and -8 levels, and consequently lower secreted insulin levels than cells differentiated from A-MSCs. These results imply that T-MSCs can differentiate into functional pancreatic islet-like cells and could provide a novel, alternative cell therapy for diabetes mellitus.