Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Psychiatry Investig ; 20(2): 130-136, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36891597

RESUMO

OBJECTIVE: Optimism, social support, and spirituality can be important factors related to coronavirus disease-2019 (COVID-19) stress. However, studies investigating the influence and interplay of optimism, social support, and spirituality on COVID-19 simultaneously are still few. This study is aimed to explore the influence of optimism, social support, and spirituality on COVID-19 stress in the Christian church community. METHODS: A total 350 participants were included in this study. This study was cross-sectionally conducted by using an online survey on optimism, social support, spirituality, and COVID-19 stress that were measured by the Life Orientation Test-Revised (LOT-R), Multidimensional Scale of Perceived Social Support Scale (MSPSS), Spiritual Well-Being Scale (SWBS), and COVID-19 Stress Scale for Korean People (CSSK). The prediction models for COVID-19 stress were analyzed by using univariate and multiple linear regression. RESULTS: Based on the results of univariate linear regression, subjective feelings on income (p<0.001) and health status (p<0.001), LOTR (p<0.001), MSPSS (p=0.025), and SWBS (p<0.001) scores were significantly associated with COVID-19 stress. The multiple linear regression model with subjective feelings on income and health status and SWSB score was significant (p<0.001) and explained 17.7% of the variance (R2=0.177). CONCLUSION: This study showed that subjective feeling on low income, those who had poor health status, lower optimism, lower perceived social support, and lower spirituality were significantly affected with COVID-19 stress. Especially, the model with subjective feelings on income and health status, and spirituality showed highly significant effects, despite the interaction with associated factors. To cope with unpredictable stressful situations like the COVID-19 pandemic, integrated interventions on psycho-socio-spiritual aspect are warranted.

2.
Epigenetics ; 11(11): 804-818, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27611852

RESUMO

Wilson disease (WD), a genetic disorder affecting copper transport, is characterized by hepatic and neurological manifestations with variable and often unpredictable presentation. Global DNA methylation in liver was previously modified by dietary choline in tx-j mice, a spontaneous mutant model of WD. We therefore hypothesized that the WD phenotype and hepatic gene expression of tx-j offspring could be modified by maternal methyl supplementation during pregnancy. In an initial experiment, female tx-j mice or wild type mice were fed control or choline-supplemented diets 2 weeks prior to mating through embryonic day 17. Transcriptomic analysis (RNA-seq) on embryonic livers revealed tx-j-specific differences in genes related to oxidative phosphorylation, mitochondrial dysfunction, and the neurological disorders Huntington's disease and Alzheimer disease. Maternal choline supplementation restored the transcript levels of a subset of genes to wild type levels. In a separate experiment, a group of tx-j offspring continued to receive choline-supplemented or control diets, with or without the copper chelator penicillamine (PCA) for 12 weeks until 24 weeks of age. Combined choline supplementation and PCA treatment of 24-week-old tx-j mice was associated with increased liver transcript levels of methionine metabolism and oxidative phosphorylation-related genes. Sex differences in gene expression within each treatment group were also observed. These results demonstrate that the transcriptional changes in oxidative phosphorylation and methionine metabolism genes in WD that originate during fetal life are, in part, prevented by prenatal maternal choline supplementation, a finding with potential relevance to preventive treatments of WD.


Assuntos
Metilação de DNA/genética , Epigenômica , Degeneração Hepatolenticular/genética , Transcriptoma/genética , Animais , Colina/administração & dosagem , Colina/metabolismo , Cobre/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Degeneração Hepatolenticular/metabolismo , Degeneração Hepatolenticular/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Metionina/metabolismo , Camundongos , Fosforilação Oxidativa/efeitos dos fármacos , Penicilamina/administração & dosagem , Gravidez
3.
Metab Syndr Relat Disord ; 14(4): 202-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26881897

RESUMO

BACKGROUND: Previous studies indicated that nonpurified and purified commercially available control murine diets have different metabolic effects with potential consequences on hepatic methionine metabolism and liver histology. METHODS: We compared the metabolic and histological effects of commercial nonpurified (13% calories from fat; 57% calories from carbohydrates with 38 grams/kg of sucrose) and purified control diets (12% calories from fat; 69% calories from carbohydrates with ∼500 grams/kg of sucrose) with or without choline supplementation administered to C3H mice with normal lipid and methionine metabolism. Diets were started 2 weeks before mating, continued through pregnancy and lactation, and continued in offspring until 24 weeks of age when we collected plasma and liver tissue to study methionine and lipid metabolism. RESULTS: Compared to mice fed nonpurified diets, the liver/body weight ratio was significantly higher in mice fed either purified diet, which was associated with hepatic steatosis and inflammation. Plasma alanine aminotransferase levels were higher in mice receiving the purified diets. The hepatic S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio was higher in female mice fed purified compared to nonpurified diet (4.6 ± 2 vs. 2.8 ± 1.9; P < 0.05). Choline supplementation was associated with improvement of some parameters of lipid and methionine metabolism in mice fed purified diets. CONCLUSIONS: Standard nonpurified and purified diets have significantly different effects on development of steatosis in control mice. These findings can help in development of animal models of fatty liver and in choosing appropriate laboratory control diets for control animals.


Assuntos
Colina/metabolismo , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos , Metionina/metabolismo , Animais , Dieta , Gorduras na Dieta/administração & dosagem , Sacarose Alimentar/administração & dosagem , Suplementos Nutricionais , Comportamento Alimentar , Feminino , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C3H , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
4.
Exp Gerontol ; 77: 29-37, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26875793

RESUMO

Calorie restriction (CR) consistently extends longevity and delays age-related diseases across several animal models. We have previously shown that different dietary fat sources can modulate life span and mitochondrial ultrastructure, function and membrane fatty acid composition in mice maintained on a 40% CR. In particular, animals consuming lard as the main fat source (CR-Lard) lived longer than CR mice consuming diets with soybean oil (CR-Soy) or fish oil (CR-Fish) as the predominant lipid source. In the present work, a transcriptomic analysis in the liver and skeletal muscle was performed in order to elucidate possible mechanisms underlying the changes in energy metabolism and longevity induced by dietary fat in CR mice. After 8 months of CR, transcription downstream of several mediators of inflammation was inhibited in liver. In contrast, proinflammatory signaling was increased in the CR-Fish versus other CR groups. Dietary fish oil induced a gene expression pattern consistent with increased transcriptional regulation by several cytokines (TNF, GM-CSF, TGF-ß) and sex hormones when compared to the other CR groups. The CR-Fish also had lower expression of genes involved in fatty acid biosynthesis and increased expression of mitochondrial and peroxisomal fatty acid ß-oxidation genes than the other CR diet groups. Our data suggest that a diet high in n-3 PUFA, partially reverts CR-related changes in gene expression of key processes, such as inflammation and steroid hormone signaling, and this may mitigate life span extension with CR in mice consuming diets high in fish oil.


Assuntos
Restrição Calórica , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Peso Corporal , Perfilação da Expressão Gênica , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Tamanho do Órgão , Distribuição Aleatória
5.
J Gerontol A Biol Sci Med Sci ; 70(10): 1181-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25313149

RESUMO

Calorie restriction (CR) without malnutrition extends life span in several animal models. It has been proposed that a decrease in the amount of polyunsaturated fatty acids (PUFAs), and especially n-3 fatty acids, in membrane phospholipids may contribute to life span extension with CR. Phospholipid PUFAs are sensitive to dietary fatty acid composition, and thus, the purpose of this study was to determine the influence of dietary lipids on life span in CR mice. C57BL/6J mice were assigned to four groups (a 5% CR control group and three 40% CR groups) and fed diets with soybean oil (high in n-6 PUFAs), fish oil (high in n-3 PUFAs), or lard (high in saturated and monounsaturated fatty acids) as the primary lipid source. Life span was increased (p < .05) in all CR groups compared to the Control mice. Life span was also increased (p < .05) in the CR lard mice compared to animals consuming either the CR fish or soybean oil diets. These results indicate that dietary lipid composition can influence life span in mice on CR, and suggest that a diet containing a low proportion of PUFAs and high proportion of monounsaturated and saturated fats may maximize life span in animals maintained on CR.


Assuntos
Restrição Calórica , Gorduras na Dieta , Longevidade , Animais , Ácidos Graxos , Ácidos Graxos Monoinsaturados , Ácidos Graxos Insaturados , Óleos de Peixe , Camundongos , Camundongos Endogâmicos C57BL , Óleo de Soja
6.
Epigenetics ; 9(2): 286-96, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24220304

RESUMO

Maternal diet can affect fetal gene expression through epigenetic mechanisms. Wilson disease (WD), which is caused by autosomal recessive mutations in ATP7B encoding a biliary copper transporter, is characterized by excessive hepatic copper accumulation, but variability in disease severity. We tested the hypothesis that gestational supply of dietary methyl groups modifies fetal DNA methylation and expression of genes involved in methionine and lipid metabolism that are impaired prior to hepatic steatosis in the toxic milk (tx-j) mouse model of WD. Female C3H control and tx-j mice were fed control (choline 8 mmol/Kg of diet) or choline-supplemented (choline 36 mmol/Kg of diet) diets for 2 weeks throughout mating and pregnancy to gestation day 17. A second group of C3H females, half of which were used to cross foster tx-j pups, received the same diet treatments that extended during lactation to 21 d postpartum. Compared with C3H, fetal tx-j livers had significantly lower copper concentrations and significantly lower transcript levels of Cyclin D1 and genes related to methionine and lipid metabolism. Maternal choline supplementation prevented the transcriptional deficits in fetal tx-j liver for multiple genes related to cell growth and metabolism. Global DNA methylation was increased by 17% in tx-j fetal livers after maternal choline treatment (P<0.05). Maternal dietary choline rescued the lower body weight of 21 d tx-j mice. Our results suggest that WD pathogenesis is modified by maternal in utero factors, including dietary choline.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Colina/metabolismo , Cobre/metabolismo , Metilação de DNA , Feto/metabolismo , Degeneração Hepatolenticular/metabolismo , Fígado/metabolismo , Troca Materno-Fetal , Animais , Colina/administração & dosagem , Ciclina D1/metabolismo , Dieta , Feminino , Expressão Gênica , Degeneração Hepatolenticular/patologia , Degeneração Hepatolenticular/fisiopatologia , Metabolismo dos Lipídeos , Fígado/patologia , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Gravidez
7.
Hepatology ; 57(2): 555-65, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22945834

RESUMO

UNLABELLED: Hepatic methionine metabolism may play an essential role in regulating methylation status and liver injury in Wilson's disease (WD) through the inhibition of S-adenosylhomocysteine hydrolase (SAHH) by copper (Cu) and the consequent accumulation of S-adenosylhomocysteine (SAH). We studied the transcript levels of selected genes related to liver injury, levels of SAHH, SAH, DNA methyltransferases genes (Dnmt1, Dnmt3a, Dnmt3b), and global DNA methylation in the tx-j mouse (tx-j), an animal model of WD. Findings were compared to those in control C3H mice, and in response to Cu chelation by penicillamine (PCA) and dietary supplementation of the methyl donor betaine to modulate inflammatory and methylation status. Transcript levels of selected genes related to endoplasmic reticulum stress, lipid synthesis, and fatty acid oxidation were down-regulated at baseline in tx-j mice, further down-regulated in response to PCA, and showed little to no response to betaine. Hepatic Sahh transcript and protein levels were reduced in tx-j mice with consequent increase of SAH levels. Hepatic Cu accumulation was associated with inflammation, as indicated by histopathology and elevated serum alanine aminotransferase (ALT) and liver tumor necrosis factor alpha (Tnf-α) levels. Dnmt3b was down-regulated in tx-j mice together with global DNA hypomethylation. PCA treatment of tx-j mice reduced Tnf-α and ALT levels, betaine treatment increased S-adenosylmethionine and up-regulated Dnmt3b levels, and both treatments restored global DNA methylation levels. CONCLUSION: Reduced hepatic Sahh expression was associated with increased liver SAH levels in the tx-j model of WD, with consequent global DNA hypomethylation. Increased global DNA methylation was achieved by reducing inflammation by Cu chelation or by providing methyl groups. We propose that increased SAH levels and inflammation affect widespread epigenetic regulation of gene expression in WD.


Assuntos
Metilação de DNA/efeitos dos fármacos , Fígado/metabolismo , Metionina/metabolismo , Adenosil-Homocisteinase/antagonistas & inibidores , Adenosil-Homocisteinase/metabolismo , Animais , Betaína/metabolismo , Betaína/farmacologia , Cobre/metabolismo , Cobre/farmacologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Estresse do Retículo Endoplasmático , Epigênese Genética/efeitos dos fármacos , Degeneração Hepatolenticular/metabolismo , Degeneração Hepatolenticular/patologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Penicilamina/farmacologia , S-Adenosil-Homocisteína/metabolismo , DNA Metiltransferase 3B
8.
Biosci Rep ; 33(1): 83-95, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23098316

RESUMO

To investigate the role mitochondrial membrane lipids play in the actions of CR (calorie restriction), C57BL/6 mice were assigned to four groups (control and three 40% CR groups) and the CR groups were fed diets containing soya bean oil (also in the control diet), fish oil or lard. The fatty acid composition of the major mitochondrial phospholipid classes, proton leak and H(2)O(2) production were measured in liver mitochondria following 1 month of CR. The results indicate that mitochondrial phospholipid fatty acids reflect the PUFA (polyunsaturated fatty acid) profile of the dietary lipid sources. CR significantly decreased the capacity of ROS (reactive oxygen species) production by Complex III but did not markedly alter proton leak and ETC (electron transport chain) enzyme activities. Within the CR regimens, the CR-fish group had decreased ROS production by both Complexes I and III, and increased proton leak when compared with the other CR groups. The CR-lard group showed the lowest proton leak compared with the other CR groups. The ETC enzyme activity measurements in the CR regimens showed that Complex I activity was decreased in both the CR-fish and CR-lard groups. Moreover, the CR-fish group also had lower Complex II activity compared with the other CR groups. These results indicate that dietary lipid composition does influence liver mitochondrial phospholipid composition, ROS production, proton leak and ETC enzyme activities in CR animals.


Assuntos
Restrição Calórica , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Animais , Peso Corporal , Dieta , Gorduras na Dieta/farmacologia , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Ativação Enzimática , Óleos de Peixe/farmacologia , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Tamanho do Órgão , Estresse Oxidativo , Prótons , Espécies Reativas de Oxigênio/metabolismo , Óleo de Soja/farmacologia , Fatores de Tempo
9.
Metabolism ; 60(12): 1711-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21640360

RESUMO

The objective of the study was to compare the effects of essential vs long-chain omega (n)-3 polyunsaturated fatty acids (PUFAs) in polycystic ovary syndrome. In this 6-week, prospective, double-blinded, placebo (soybean oil)-controlled study, 51 completers received 3.5 g n-3 PUFA per day (essential PUFA from flaxseed oil or long-chain PUFA from fish oil). Anthropometric variables, cardiovascular risk factors, and androgens were measured; oral glucose tolerance test (OGTT) and frequently sampled intravenous GTT (IVGTT) were conducted at baseline and 6 weeks. Between-group comparisons showed significant differences in serum triglyceride response (P = .0368), whereas the changes in disposition index also tended to differ (P = .0621). When within-group changes (after vs before intervention) were considered, fish oil and flaxseed oil lowered serum triglyceride (P = .0154 and P = .0176, respectively). Fish oil increased glucose at 120 minutes of OGTT (P = .0355), decreased the Matsuda index (P = .0378), and tended to decrease acute insulin response during IVGTT (P = .0871). Soybean oil increased glucose at 30 (P = .0030) and 60 minutes (P = .0121) and AUC for glucose (P = .0122) during OGTT, tended to decrease acute insulin response during IVGTT (P = .0848), reduced testosterone (P = .0216), and tended to reduce sex hormone-binding globulin (P = .0858). Fasting glucose, insulin, adiponectin, leptin, or high-sensitivity C-reactive protein did not change with any intervention. Long-chain vs essential n-3 PUFA-rich oils have distinct metabolic and endocrine effects in polycystic ovary syndrome; and therefore, they should not be used interchangeably.


Assuntos
Biomarcadores/sangue , Ácidos Graxos Essenciais/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Hiperinsulinismo/induzido quimicamente , Síndrome do Ovário Policístico/sangue , Adulto , Glicemia/metabolismo , Proteína C-Reativa/metabolismo , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Método Duplo-Cego , Esquema de Medicação , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Essenciais/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/efeitos adversos , Feminino , Óleos de Peixe/efeitos adversos , Óleos de Peixe/farmacologia , Teste de Tolerância a Glucose , Humanos , Hiperinsulinismo/sangue , Insulina/sangue , Resistência à Insulina , Óleo de Semente do Linho/farmacologia , Pessoa de Meia-Idade , Síndrome do Ovário Policístico/tratamento farmacológico , Estudos Prospectivos , Globulina de Ligação a Hormônio Sexual/metabolismo , Óleo de Soja/farmacologia , Testosterona/sangue , Triglicerídeos/sangue
10.
J Nutr ; 138(6): 1010-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18492827

RESUMO

We used high-density oligonucleotide arrays to measure transcriptional alterations in the heart and brain (neocortex) of 30-mo-old B6C3F(1) mice supplemented with alpha-tocopherol (alphaT) and gamma-tocopherol (gammaT) since middle age (15 mo). Gene expression profiles were obtained from 5- and 30-mo-old control mice and 30-mo-old mice supplemented with alphaT (1 g/kg) or a mixture of alphaT and gammaT (500 mg/kg of each tocopherol) from middle age (15 mo). In the heart, both tocopherol-supplemented diets were effective in inhibiting the expression of genes previously associated with cardiomyocyte hypertrophy and increased innate immunity. In the brain, induction of genes encoding ribosomal proteins and proteins involved in ATP biosynthesis was observed with aging and was markedly prevented by the mixture of alphaT and gammaT supplementation but not by alphaT alone. These results demonstrate that middle age-onset dietary supplementation with alphaT and gammaT can partially prevent age-associated transcriptional changes and that these effects are tissue and tocopherol specific.


Assuntos
Envelhecimento/efeitos dos fármacos , Encéfalo/fisiologia , Coração/fisiologia , Transcrição Gênica/efeitos dos fármacos , alfa-Tocoferol/farmacologia , gama-Tocoferol/farmacologia , Envelhecimento/fisiologia , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Citocinas/genética , Citocinas/metabolismo , Suplementos Nutricionais , Quimioterapia Combinada , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Organismos Livres de Patógenos Específicos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , alfa-Tocoferol/administração & dosagem , gama-Tocoferol/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA