Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239855

RESUMO

Oral cancer remains the leading cause of death worldwide. Rhein is a natural compound extracted from the traditional Chinese herbal medicine rhubarb, which has demonstrated therapeutic effects in various cancers. However, the specific effects of rhein on oral cancer are still unclear. This study aimed to investigate the potential anticancer activity and underlying mechanisms of rhein in oral cancer cells. The antigrowth effect of rhein in oral cancer cells was estimated by cell proliferation, soft agar colony formation, migration, and invasion assay. The cell cycle and apoptosis were detected by flow cytometry. The underlying mechanism of rhein in oral cancer cells was explored by immunoblotting. The in vivo anticancer effect was evaluated by oral cancer xenografts. Rhein significantly inhibited oral cancer cell growth by inducing apoptosis and S-phase cell cycle arrest. Rhein inhibited oral cancer cell migration and invasion through the regulation of epithelial-mesenchymal transition-related proteins. Rhein induced reactive oxygen species (ROS) accumulation in oral cancer cells to inhibit the AKT/mTOR signaling pathway. Rhein exerted anticancer activity in vitro and in vivo by inducing oral cancer cell apoptosis and ROS via the AKT/mTOR signaling pathway in oral cancer. Rhein is a potential therapeutic drug for oral cancer treatment.


Assuntos
Neoplasias Bucais , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Proliferação de Células , Neoplasias Bucais/tratamento farmacológico , Linhagem Celular Tumoral
2.
J Cancer Prev ; 27(4): 239-246, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36713940

RESUMO

Since ancient times, honey has been used in traditional medicine owing to its pharmacological effects. It possesses anticancer properties. However, the therapeutic implications of Sangju honey in cancer remains unknown. Therefore, we aimed to demonstrate the potential anticancer effects of Sangju honey on human oral squamous cell carcinoma (OSCC), particularly focusing on epithelial-mesenchymal transition (EMT) and apoptotic and mitogen-activated protein kinase (MAPK) signaling pathways. Ca9-22 and YD-10B human OSCC cells were treated with 0.25% or 0.5% Sangju honey, and the cell viability was examined using the Cell Counting Kit-8 assay. Cell morphology studies were conducted to observe morphological changes, and the wound-healing assay was performed to evaluate the proliferation of honey-treated OSCC cells. Western blot analysis was conducted to investigate protein expression related to EMT and apoptotic and MAPK signaling pathways. Sangju honey reduced cell viability, induced morphological changes, and significantly suppressed the proliferation and migration of Ca9-22 and YD-10B cells. The expression of E-cadherin and N-cadherin was increased and decreased, respectively, in both OSCC cell lines. Moreover, Sangju honey stimulated apoptosis by increasing the expression of p21, p53, cleaved caspase 3, and caspase 9. Furthermore, it downregulated the expression of phospho (p)-extracellular signal-regulated kinases 1 and 2, p-c-Jun amino-terminal kinase, and p-p38 in Ca9-22 and YD-10B cells. Sangju honey inhibits Ca9-22 and YD-10B cell proliferation by regulating EMT, inducing apoptosis, and suppressing the MAPK signaling pathway. Thus, it is a potential anticancer agent for human OSCC.

3.
J Exp Clin Cancer Res ; 40(1): 114, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785035

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a clinically challenging malignant tumor worldwide. As a natural product and sesquiterpene lactone, Costunolide (CTD) has been reported to possess anticancer activities. However, the regulation mechanism and precise target of this substance remain undiscovered in CRC. In this study, we found that CTD inhibited CRC cell proliferation in vitro and in vivo by targeting AKT. METHODS: Effects of CTD on colon cancer cell growth in vitro were evaluated in cell proliferation assays, migration and invasion, propidium iodide, and annexin V-staining analyses. Targets of CTD were identified utilizing phosphoprotein-specific antibody array; Costunolide-sepharose conjugated bead pull-down analysis and knockdown techniques. We investigated the underlying mechanisms of CTD by ubiquitination, immunofluorescence staining, and western blot assays. Cell-derived tumour xenografts (CDX) in nude mice and immunohistochemistry were used to assess anti-tumour effects of CTD in vivo. RESULTS: CTD suppressed the proliferation, anchorage-independent colony growth and epithelial-mesenchymal transformation (EMT) of CRC cells including HCT-15, HCT-116 and DLD1. Besides, the CTD also triggered cell apoptosis and cell cycle arrest at the G2/M phase. The CTD activates and induces p53 stability by inhibiting MDM2 ubiquitination via the suppression of AKT's phosphorylation in vitro. The CTD suppresses cell growth in a p53-independent fashion manner; p53 activation may contribute to the anticancer activity of CTD via target AKT. Finally, the CTD decreased the volume of CDX tumors without of the body weight loss and reduced the expression of AKT-MDM2-p53 signaling pathway in xenograft tumors. CONCLUSIONS: Our project has uncovered the mechanism underlying the biological activity of CTD in colon cancer and confirmed the AKT is a directly target of CTD. All of which These results revealed that CTD might be a new AKT inhibitor in colon cancer treatment, and CTD is worthy of further exploration in preclinical and clinical trials.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sesquiterpenos/uso terapêutico , Animais , Apoptose , Feminino , Humanos , Camundongos , Sesquiterpenos/farmacologia , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Exp Mol Med ; 44(9): 529-35, 2012 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22718219

RESUMO

Oxidative stress such as reactive oxygen species (ROS) within the inflamed joint have been indicated as being involved as inflammatory mediators in the induction of arthritis. Correlations between extracellular- superoxide dismutase (EC-SOD) and inflammatory arthritis have been shown in several animal models of RA. However, there is a question whether the over-expression of EC-SOD on arthritic joint also could suppress the progression of disease or not. In the present study, the effect on the synovial tissue of experimental arthritis was investigated using EC-SOD over-expressing transgenic mice. The over-expression of EC- SOD in joint tissue was confirmed by RT-PCR and immunohistochemistry. The degree of the inflammation in EC-SOD transgenic mice was suppressed in the collagen-induced arthritis model. In a cytokine assay, the production of pro-inflammatory cytokines such as, IL-1ß, TNFα, and matrix metalloproteinases (MMPs) was decreased in fibroblast-like synoviocyte (FLS) but not in peripheral blood. Histological examination also showed repressed cartilage destruction and bone in EC-SOD transgenic mice. In conclusion, these data suggest that the over-expression of EC-SOD in FLS contributes to the activation of FLS and protection from joint destruction by depressing the production of the pro-inflammatory cytokines and MMPs. These results provide EC-SOD transgenic mice with a useful animal model for inflammatory arthritis research.


Assuntos
Artrite Experimental/enzimologia , Artrite Reumatoide , Superóxido Dismutase , Líquido Sinovial/enzimologia , Animais , Artrite Experimental/sangue , Artrite Experimental/metabolismo , Artrite Reumatoide/enzimologia , Artrite Reumatoide/patologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Inflamação/patologia , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Articulações/enzimologia , Articulações/patologia , Metaloproteinases da Matriz/sangue , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Membrana Sinovial/patologia
5.
J Interferon Cytokine Res ; 32(1): 6-11, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22175542

RESUMO

Calcineurin (CN) is a calcium- and calmodulin-dependent serine/threonine phosphatase. In immune cells, CN controls the activity of a wide range of transcription factors, including nuclear factor of activated T, nuclear factor-kappa B, c-fos, and Elk-1. CN plays an important role in synoviocyte activation and arthritis progression in vivo and this function is tightly linked to dysregulated intracellular Ca(2+) store and Ca(2+) response triggered by proinflammatory cytokines. In the present study, transgenic mice expressing human calcineurin-binding protein 1 (hCabin1) were generated, driven by type II collagen promoter, and the efficiency of these mice was investigated by experimental arthritis. These transgenic mice successfully expressed hCabin1 in joint tissue as well as other organs such as liver, heart, and brain. The overexpression of hCabin1 reduced the disease severity during collagen-induced arthritis. In fibroblast-like synoviocytes (FLSs) from hCabin1 transgenic mice, the productions of these cytokines, including interleukin (IL)-2, IL-4, and IFN-γ, were decreased and matrix metalloproteinases were also depressed in transgenic mice FLS. In addition, these effects were only found in the joint tissue, which is a major inflammation site. These findings will provide a better knowledge of the pathogenic mechanisms of rheumatoid arthritis and a potential animal model of the chronic inflammatory conditions, including atherosclerosis and transplantation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Membrana Sinovial/metabolismo , Animais , Artrite Experimental/genética , Artrite Experimental/metabolismo , Citocinas/biossíntese , Progressão da Doença , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Especificidade de Órgãos/genética
6.
Cell Transplant ; 17(12): 1371-80, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19364074

RESUMO

Rheumatoid arthritis is a chronic inflammatory disease. The generation of reactive oxygen species (ROS) within an inflamed joint has been suggested as playing a significant pathogenic role. Extracellular superoxide dismutase (EC-SOD) is a major scavenger enzyme of ROS, which has received growing attention for its therapeutic potential. To investigate the therapeutic effect of EC-SOD in mice with collagen-induced arthritis (CIA), we used mouse embryonic fibroblast (MEF) of transgenic mice that overexpresses EC-SOD on the skin by using hK14 promoter. DBA/1 mice that had been treated with bovine type II collagen were administrated subcutaneous injections of EC-SOD transgenic MEF (each at 1.4 x 10(60 cells) on days 28, 35, and 42 after primary immunization. To test EC-SOD activity, blood samples were collected in each group on day 49. The EC-SOD activity was nearly 1.5-fold higher in the transgenic MEF-treated group than in the nontransgenic MEF-treated group (p < 0.05). The severity of arthritis in mice was scored in a double-blind manner, with each paw being assigned a separate clinical score. The severity of arthritis in EC-SOD transgenic MEF-treated mice was significantly suppressed in the arthritic clinical score (p < 0.05). To investigate the alteration of cytokine levels, ELISA was used to measure blood samples. Levels of IL-1beta and TNF-alpha were reduced in the transgenic MEF-treated group (p < 0.05). Abnormalities of the joints were examined by H&E staining. There were no signs of inflammation except for mild hyperplasia of the synovium in the transgenic MEF-treated group. The proliferation of CII-specific T cells was lower in the transgenic MEF-treated mice than in those in the other groups. The transfer of EC-SOD transgenic MEF has shown a therapeutic effect in CIA mice and this approach may be a safer and more effective form of therapy for rheumatoid arthritis.


Assuntos
Artrite Experimental/cirurgia , Transplante de Células/métodos , Fibroblastos/transplante , Superóxido Dismutase/uso terapêutico , Animais , Fibroblastos/enzimologia , Humanos , Queratina-14/genética , Ativação Linfocitária , Camundongos , Camundongos SCID , Camundongos Transgênicos , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia
7.
Theriogenology ; 67(4): 698-703, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17125828

RESUMO

In the present study, canine oocytes were exposed to various concentrations of and durations of exposure to EDTA saturated with Ca(2+) (Ca-EDTA), a cell membrane-impermeable metal ion chelator, to determine if parthenogenetic activation could be induced. When oocytes were cultured for 48 or 72 h in parthenogenetic activation medium (PAM) without Ca-EDTA (control) or PAM supplemented with 1 or 5mM Ca-EDTA, the highest rate of pronuclear formation (PN) was obtained in oocytes cultured in 1mM Ca-EDTA for 48 h (8.0%; P<0.05). There was no pronuclear formation in the control group (PAM without Ca-EDTA). Oocytes treated with 5mM Ca-EDTA for 48 h or 1mM Ca-EDTA for 72 h formed a parthenogenetic pronucleus (3.1 and 4.5, respectively). However, there was no pronuclear formation in oocytes treated with 5mM Ca-EDTA for 72 h. In summary, exposure to Ca-EDTA can induce pronuclear formation in canine oocytes.


Assuntos
Quelantes/farmacologia , Técnicas de Cultura/veterinária , Cães/fisiologia , Ácido Edético/farmacologia , Oócitos/efeitos dos fármacos , Partenogênese/efeitos dos fármacos , Animais , Feminino , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA