Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(2)2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370076

RESUMO

Stress can lead to inflammation, accelerated aging, and some chronic diseases condition. Mentha arvensis (MA) is a traditional medicine having antioxidant and anti-inflammatory activities. The present study investigated the anti-stress role of MA and fermented MA (FMA) extract in immobilized rats. We studied the lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells and rats were immobilized for 2 h per day for 14 days using a restraining cage. MA (100 mg/kg) and FMA (100 mg/kg) were orally administered to rats 1 h prior to immobilization. Using high-performance liquid chromatography (HPLC) analysis, we determined the rosmarinic acid content of MA and FMA. The generation of malondialdehyde (MDA) and nitric oxide (NO) in RAW 246.7 cells were suppressed by both MA and FMA. In rats, MA and FMA notably improved the body weight, daily food intake, and duodenum histology. MDA and NO level were gradually decreased by MA and FMA treatment. MA and FMA significantly controlled the stress-related hormones by decreasing corticosterone and ß-endorphin and increasing serotonin level. Moreover, protein expression levels of mitogen activated protein kinases (MAPK) and cyclooxygenase-2 (COX-2) were markedly downregulated by MA and FMA. Taken together, MA and FMA could ameliorate immobilized-stress by reducing oxidative stress, regulating stress-related hormones, and MAPK/COX-2 signaling pathways in rats. Particularly, FMA has shown greater anti-stress activities than MA.


Assuntos
Mentha/química , Extratos Vegetais/uso terapêutico , Psicotrópicos/uso terapêutico , Estresse Psicológico/tratamento farmacológico , Animais , Peso Corporal , Linhagem Celular , Corticosterona/sangue , Ciclo-Oxigenase 2/metabolismo , Ingestão de Alimentos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Malondialdeído/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Psicotrópicos/farmacologia , Ratos , Ratos Sprague-Dawley , Restrição Física/efeitos adversos , Serotonina/sangue , Estresse Psicológico/etiologia , beta-Endorfina/sangue
2.
J Ethnopharmacol ; 194: 1022-1031, 2016 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-27836777

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The plant species Taraxacum coreanum (TC), Youngia sonchifolia (YS), and Ixeris dentata (ID) belong to the family Compositae and are used for medicinal purposes in traditional medicine. However, the anticancer effects of TC, YS, and ID extracts and the underlying molecular mechanisms in melanoma cells have not been elucidated. AIM OF THE STUDY: To investigate the potential anticancer effects of TC, YS, and ID extracts on human melanoma cells and explore the potential pharmacological mechanisms in vitro and in vivo. MATERIALS AND METHODS: In this comparative study, we investigated the effects of TC, YS, and ID extracts on cell proliferation in human melanoma A375P and A375SM cells using MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays. Apoptotic cells were detected by 4',6-diamidino-2-phenylinodole (DAPI) staining. We also investigated whether the growth-inhibitory effects were associated with the induction of apoptosis and whether the mechanisms of cell death were the result of signaling molecules such as p53, Bax, Bcl-2, caspase-9, Poly-ADP ribose polymerase (PARP), and Erk (Extracellular signal-regulated protein kinase) 1/2. The in vivo antitumor effects were evaluated by measuring the tumor volume and weight and performing Terminal deoxynucleotidyl transferase (TdT) dUTP Nick End Labeling (TUNEL) assay and immunohistochemistry (IHC) in tumor xenograft models. RESULTS: TC, YS, and ID extracts effectively inhibited the growth of A375P and A375SM cells. In addition, several apoptotic events were observed following treatment, including DNA fragmentation and chromatin condensation by DAPI staining. The extracts increased p53, Bax, cleaved-caspase-9 and cleaved-PARP expression, whereas the expression of Bcl-2 was decreased in both cell lines. Furthermore, ID extract significantly inhibited the activation of Erk1/2 in both cell lines. Among the three extracts, ID had the strongest apoptotic effects. The administration of ID extract to mice inhibited tumor growth without any toxicity following 4 weeks of treatment. This extract increased the expression of apoptotic cells and p53 protein and decreased phospho-Erk1/2 protein. CONCLUSION: TC, YS, and ID extracts suppress the growth of human melanoma cells through apoptosis. Among these extracts, ID has the strongest anticancer and apoptotic effects. It induces apoptosis through the inhibition of Erk1/2 in A375P and A375SM human melanoma cells and in tumor xenograft models and may be a potential chemotherapeutic agent against melanoma.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Asteraceae/química , Melanoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Taraxacum/química , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Extratos Vegetais/química , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
3.
Int J Mol Med ; 37(4): 939-48, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26951885

RESUMO

α-mangostin is a dietary xanthone which has been shown to have antioxidant, anti-allergic, antiviral, antibacterial, anti-inflammatory and anticancer effects in various types of human cancer cells. In the present study, we aimed to elucidate the molecular mechanisms responsible for the apoptosis-inducing effects of α-mangostin on YD-15 tongue mucoepidermoid carcinoma cells. The results from MTT assays revealed that cell proliferation significantly decreased in a dose-dependent manner in the cells treated with α-mangostin. DAPI staining illustrated that chromatin condensation in the cells treated with 15 µM α-mangostin was far greater than that in the untreated cells. Flow cytometric analysis indicated that α-mangostin suppressed YD-15 cell viability by inducing apoptosis and promoting cell cycle arrest in the sub-G1 phase. Western blot analysis of various signaling molecules revealed that α-mangostin targeted the extracellular signal­regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) signaling pathways through the inhibition of ERK1/2 and p38 phosphorylation in a dose­dependent manner. α-mangostin also increased the levels of Bax (pro-apoptotic), cleaved caspase-3, cleaved caspase-9 and cleaved-poly(ADP-ribose) polymerase (PARP), whereas the levels of the anti-apoptotic factors, Bcl-2 and c-myc, decreased in a dose-dependent manner. The anticancer effects of α-mangostin were also investigated in a tumor xenograft mouse model. The α-mangostin-treated nude mice bearing YD-15 tumor xenografts exhibited a significantly reduced tumor volume and tumor weight due to the potent promoting effects of α-mangostin on cancer cell apoptosis, as determined by TUNEL assay. Immunohistochemical analysis revealed that the level of cleaved caspase-3 increased, whereas the Ki-67, p-ERK1/2 and p-p38 levels decreased in the α-mangostin­treated mice. Taken together, the findings of our study indicate that α-mangostin induces the apoptosis of YD-15 tongue carcinoma cells through the ERK1/2 and p38 MAPK signaling pathways.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Mucoepidermoide/tratamento farmacológico , Neoplasias da Língua/tratamento farmacológico , Xantonas/uso terapêutico , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Mucoepidermoide/metabolismo , Carcinoma Mucoepidermoide/patologia , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Frutas/química , Garcinia mangostana/química , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Língua/efeitos dos fármacos , Língua/patologia , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia , Xantonas/isolamento & purificação , Xantonas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
J Agric Food Chem ; 58(15): 8643-50, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20681654

RESUMO

Activation of AMP-activated protein kinase (AMPK), a physiological cellular energy sensor, strongly suppresses cell proliferation in both nonmalignant and tumor cells. This study demonstrates the mechanism of quercetin-induced apoptosis in HT-29 colon cancer cells. Treatment of cells with quercetin significantly decreased cell viability in a dose-dependent manner. Notably, quercetin increased cell cycle arrest in the G1 phase and up-regulated apoptosis-related proteins, such as AMPK, p53, and p21, within 48 h. Furthermore, in vivo experiments showed that quercetin treatment resulted in a significant reduction in tumor volume over 6 weeks, and apoptosis-related protein induction by quercetin was significantly higher in the 100 mg/kg treated group compared to the control group. All of these results indicate that quercetin induces apoptosis via AMPK activation and p53-dependent apoptotic cell death in HT-29 colon cancer cells and that it may be a potential chemopreventive or therapeutic agent against HT-29 colon cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias do Colo/fisiopatologia , Quercetina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/enzimologia , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Nus , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Quercetina/administração & dosagem
5.
Cancer Res Treat ; 39(4): 175-80, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19746185

RESUMO

PURPOSE: Calcium ionophore (CI) is used to generate dendritic cells (DCs) from progenitor cells, monocytes, or leukemic cells. The aim of this study was to determine the optimal dose of CI and the appropriate length of cell culture required for acute myeloid leukemia (AML) cells and to evaluate the limitations associated with CI. MATERIALS AND METHODS: To generate leukemic DCs, leukemic cells (4x10(6) cells) from six AML patients were cultured with various concentrations of CI and/or IL-4 for 1, 2 or 3 days. RESULTS: Potent leukemic DCs were successfully generated from all AML patients, with an average number of 1.2x10(6) cells produced in the presence of CI (270 ng/ml) for 2 days. Several surface molecules were clearly upregulated in AML cells supplemented with CI and IL-4, but not CD11c. Leukemic DCs cultured with CI had a higher allogeneic T cell stimulatory capacity than untreated AML cells, but the addition of IL-4 did not augment the MLR activity of these cells. AML cells cultured with CI in the presence or absence of IL-4 showed increased levels of apoptosis in comparison to primary cultures of AML cells. CONCLUSION: Although CI appears to be advantageous in terms of time and cost effectiveness, the results of the present study suggest that the marked induction of apoptosis by CI limits its application to the generation of DCs from AML cells.

6.
Curr Med Chem ; 13(10): 1203-18, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16719780

RESUMO

Currently available therapeutic options for non-insulin-dependent diabetes mellitus, such as dietary modification, oral hypoglycemics, and insulin, have limitations of their own. Many natural products and herbal medicines have been recommended for the treatment of diabetes. The present paper reviews medicinal plants that have shown experimental or clinical antidiabetic activity and that have been used in traditional systems of medicine; the review also covers natural products (active natural components and crude extracts) isolated from the medicinal plants and reported during 2001 to 2005. Many kinds of natural products, such as terpenoids, alkaloids, flavonoids, phenolics, and some others, have shown antidiabetic potential. Particularly, schulzeines A, B, and C, radicamines A and B, 2,5-imino-1,2,5-trideoxy-L-glucitol, beta-homofuconojirimycin, myrciacitrin IV, dehydrotrametenolic acid, corosolic acid (Glucosol), 4-(alpha-rhamnopyranosyl)ellagic acid, and 1,2,3,4,6-pentagalloylglucose have shown significant antidiabetic activities. Among active medicinal herbs, Momordica charantia L. (Cucurbitaceae), Pterocarpus marsupium Roxb. (Leguminoceae), and Trigonella foenum graecum L. (Leguminosae) have been reported as beneficial for treatment of type 2 diabetes.


Assuntos
Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Plantas Medicinais/química , Alcaloides/química , Alcaloides/uso terapêutico , Animais , Diabetes Mellitus/tratamento farmacológico , Flavonoides/química , Flavonoides/uso terapêutico , Humanos , Hipoglicemiantes/isolamento & purificação , Fitoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA