Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 69(1): 315-324, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33372793

RESUMO

A compound K-producing fungus was isolated from meju (fermented soybean brick) and identified as the generally recognized as safe (GRAS) strain Aspergillus tubingensis. The extracellular enzymes obtained after the cultivation of 6 days in the medium with 20 g/L citrus pectin as an inducer showed the highest compound K-producing activity among the inducers tested. Under the optimized conditions of 0.05 mM MgSO4, 55 °C, pH 4.0, 13.4 mM protopanaxadiol (PPD)-type ginsenosides, and 11 mg/mL enzymes, the extracellular enzymes from A. tubingensis completely converted PPD-type ginsenosides in the ginseng extract to 13.4 mM (8.35 mg/mL) compound K after 20 h, with the highest concentration and productivity among the results reported so far. As far as we know, this is the first GRAS enzyme to completely convert all PPD-type ginsenosides to compound K.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/metabolismo , Ginsenosídeos/química , Extratos Vegetais/metabolismo , Sapogeninas/metabolismo , Aspergillus/química , Aspergillus/metabolismo , Biotransformação , Proteínas Fúngicas/química , Estrutura Molecular , Panax/química , Extratos Vegetais/química , Sapogeninas/química
2.
J Microbiol Biotechnol ; 30(10): 1560-1567, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32807754

RESUMO

Compound K (C-K) is one of the most pharmaceutically effective ginsenosides, but it is absent in natural ginseng. However, C-K can be obtained through the hydrolysis of protopanaxadiol-type ginsenosides (PPDGs) in natural ginseng. The aim of this study was to obtain the high concentration of food-available C-K using PPDGs in Korean ginseng extract by an extracellular enzyme from Aspergillus niger KACC 46495. A. niger was cultivated in the culture medium containing the inducer carboxymethyl cellulose (CMC) for 6 days. The extracellular enzyme extracted from A. niger was prepared from the culture broth by filtration, ammonium sulfate, and dialysis. The extracellular enzyme was used for C-K production using PPDGs. The glycoside-hydrolyzing pathways for converting PPDGs into C-K by the extracellular enzyme were Rb1 → Rd → F2 → C-K, Rb2 → Rd or compound O → F2 or compound Y → C-K, and Rc → Rd or compound Mc1 → F2 or compound Mc → C-K. The extracellular enzyme from A. niger at 8.0 mg/ml, which was obtained by the induction of CMC during the cultivation, converted 6.0 mg/ml (5.6 mM) PPDGs in Korean ginseng extract into 2.8 mg/ml (4.5 mM) food-available C-K in 9 h, with a productivity of 313 mg/l/h and a molar conversion of 80%. To the best of our knowledge, the productivity and concentration of C-K of the extracellular enzyme are the highest among those by crude enzymes from wild-type microorganisms.


Assuntos
Ginsenosídeos/metabolismo , Extratos Vegetais/farmacologia , Sapogeninas/metabolismo , Aspergillus niger/enzimologia , Biotransformação , Microbiologia de Alimentos , Hidrólise , Panax , beta-Glucosidase/metabolismo
3.
J Korean Med Sci ; 35(8): e50, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32103645

RESUMO

BACKGROUND: Lack of sunlight exposure is the primary reason for the worldwide epidemic of vitamin D deficiency. Although recommended sunlight exposure guidelines exist, there is no evidence regarding whether current guidelines are optimal for increasing vitamin D levels among individuals with vitamin D deficiency. METHODS: Sixty Korean adults aged 20-49 years with serum 25-hydroxyvitamin D (25[OH]D) levels of < 20 ng/mL were randomly assigned to three groups: sunlight exposure (n = 20), vitamin D supplementation groups (n = 20), and daily living (n = 20) for 1 month. The sunlight exposure group had sunlight exposure on 20% to 30% of their body surface areas for 30-60 minutes per day, 3 times a week during the summer season. Vitamin D supplementation was prescribed with 800 IU/day of vitamin D. The serum levels of 25(OH)D were measured at baseline and at 1-month follow-up examinations. RESULTS: The largest change in serum 25(OH)D was observed among the vitamin D supplementation group (+3.5 ng/mL, P < 0.001). The sunlight exposure group showed a slight increase in serum 25(OH)D level, but the absolute increase was less than one-third that of the vitamin D supplementation group (+0.9 ng/mL, P = 0.043). Only two participants in the sunlight exposure reached serum concentrations of 25(OH)D ≥ 20 ng/mL at follow-up. The daily living group showed no difference in vitamin D levels (-0.7 ng/mL, P = 0.516). CONCLUSION: Sunlight exposure was not sufficient to overcome vitamin D insufficiency or deficiency in the current study subjects. Effectiveness of current sunlight exposure guidelines among various populations should be reassessed in larger clinical studies. TRIAL REGISTRATION: Clinical Research Information Service Identifier: KCT0002671.


Assuntos
Luz Solar , Vitamina D/análogos & derivados , Adulto , Suplementos Nutricionais , Feminino , Guias como Assunto , Humanos , Masculino , Pessoa de Meia-Idade , Estações do Ano , Vitamina D/administração & dosagem , Vitamina D/sangue , Adulto Jovem
4.
J Agric Food Chem ; 67(30): 8393-8401, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31291721

RESUMO

The ginsenoside 20-O-ß-glucopyranosyl-20(S)-protopanaxadiol or compound K is an essential ingredient in functional food, cosmetics, and traditional medicines. However, no study has reported the complete conversion of all protopanaxadiol (PPD)-type ginsenosides from ginseng extract into compound K using whole-cell conversion. To increase the production of compound K from ginseng extract using whole recombinant cells, the ß-glucosidase enzyme from Caldicellulosiruptor bescii was coexpressed with a chaperone expression system (pGro7), and the cells expressing the coexpression system were permeabilized with ethylenediaminetetraacetic acid. The permeabilized cells carrying the chaperone coexpression system showed a 2.6-fold increase in productivity and yield as compared with nontreated cells, and completely converted all PPD-type ginsenosides from ginseng root extract into compound K with the highest productivity among the results reported so far. Our results will contribute to the industrial biological production of compound K.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Firmicutes/enzimologia , Ginsenosídeos/metabolismo , Chaperonas Moleculares/genética , Sapogeninas/metabolismo , beta-Glucosidase/genética , Proteínas de Bactérias/metabolismo , Biotransformação , Escherichia coli/química , Firmicutes/genética , Engenharia Genética , Ginsenosídeos/química , Chaperonas Moleculares/metabolismo , Panax/química , Sapogeninas/química , beta-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA