Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34371612

RESUMO

Korean ginseng is one of the most valuable medicinal plants worldwide. However, our understanding of ginseng proteomics is largely limited due to difficulties in the extraction and resolution of ginseng proteins because of the presence of natural contaminants such as polysaccharides, phenols, and glycosides. Here, we compared four different protein extraction methods, namely, TCA/acetone, TCA/acetone-MeOH/chloroform, phenol-TCA/acetone, and phenol-MeOH/chloroform methods. The TCA/acetone-MeOH/chloroform method displayed the highest extraction efficiency, and thus it was used for the comparative proteome profiling of leaf, root, shoot, and fruit by a label-free quantitative proteomics approach. This approach led to the identification of 2604 significantly modulated proteins among four tissues. We could pinpoint differential pathways and proteins associated with ginsenoside biosynthesis, including the methylerythritol 4-phosphate (MEP) pathway, the mevalonate (MVA) pathway, UDP-glycosyltransferases (UGTs), and oxidoreductases (CYP450s). The current study reports an efficient and reproducible method for the isolation of proteins from a wide range of ginseng tissues and provides a detailed organ-based proteome map and a more comprehensive view of enzymatic alterations in ginsenoside biosynthesis.

2.
J Ginseng Res ; 43(1): 143-153, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30662303

RESUMO

BACKGROUND: Ginseng is one of the well-known medicinal plants, exhibiting diverse medicinal effects. Its roots possess anticancer and antiaging properties and are being used in the medical systems of East Asian countries. It is grown in low-light and low-temperature conditions, and its growth is strongly inhibited at temperatures above 25°C. However, the molecular responses of ginseng to heat stress are currently poorly understood, especially at the protein level. METHODS: We used a shotgun proteomics approach to investigate the effect of heat stress on ginseng leaves. We monitored their photosynthetic efficiency to confirm physiological responses to a high-temperature stress. RESULTS: The results showed a reduction in photosynthetic efficiency on heat treatment (35°C) starting at 48 h. Label-free quantitative proteome analysis led to the identification of 3,332 proteins, of which 847 were differentially modulated in response to heat stress. The MapMan analysis showed that the proteins with increased abundance were mainly associated with antioxidant and translation-regulating activities, whereas the proteins related to the receptor and structural-binding activities exhibited decreased abundance. Several other proteins including chaperones, G-proteins, calcium-signaling proteins, transcription factors, and transfer/carrier proteins were specifically downregulated. CONCLUSION: These results increase our understanding of heat stress responses in the leaves of ginseng at the protein level, for the first time providing a resource for the scientific community.

3.
J Agric Food Chem ; 63(32): 7134-42, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26237057

RESUMO

This study develops differential protein profiles of soybean (Glycine max) seeds (cv. Saedanbaek and Daewon) varying in protein (47.9 and 39.2%) and oil (16.3 and 19.7%) content using protamine sulfate (PS) precipitation method coupled with a 2D gel electrophoresis (2DGE) approach. Of 71 detected differential spots between Daewon and Saedanbaek, 48 were successfully identified by MALDI-TOF/TOF. Gene ontology analysis revealed that up-regulated proteins in Saedanbaek were largely associated with nutrient reservoir activity (42.6%), which included mainly seed-storage proteins (SSPs; subunits of glycinin and ß-conglycinin). Similar results were also obtained in two cultivars of wild soybean (G. soja cv. WS22 and WS15) differing in protein content. Western blots confirmed higher accumulation of SSPs in protein-rich Saedanbaek. Findings presented and discussed in this study highlight a possible involvement of the urea cycle for increased accumulation of SSPs and hence the higher protein content in soybean seeds.


Assuntos
Glycine max/química , Óleos de Plantas/química , Proteínas de Plantas/química , Sementes/química , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Filogenia , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Sementes/classificação , Sementes/genética , Sementes/metabolismo , Glycine max/classificação , Glycine max/genética , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA