Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Heart Rhythm ; 16(9): 1357-1367, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31170484

RESUMO

BACKGROUND: Bipolar electrogram voltage during sinus rhythm (VSR) has been used as a surrogate for atrial fibrosis in guiding catheter ablation of persistent atrial fibrillation (AF), but the fixed rate and wavefront characteristics present during sinus rhythm may not accurately reflect underlying functional vulnerabilities responsible for AF maintenance. OBJECTIVE: The purpose of this study was determine whether, given adequate temporal sampling, the spatial distribution of mean AF voltage (VmAF) better correlates with delayed-enhancement magnetic resonance imaging (MRI-DE)-detected atrial fibrosis than VSR. METHODS: AF was mapped (8 seconds) during index ablation for persistent AF (20 patients) using a 20-pole catheter (660 ± 28 points/map). After cardioversion, VSR was mapped (557 ± 326 points/map). Electroanatomic and MRI-DE maps were co-registered in 14 patients. RESULTS: The time course of VmAF was assessed from 1-40 AF cycles (∼8 seconds) at 1113 locations. VmAF stabilized with sampling >4 seconds (mean voltage error 0.05 mV). Paired point analysis of VmAF from segments acquired 30 seconds apart (3667 sites; 15 patients) showed strong correlation (r = 0.95; P <.001). Delayed enhancement (DE) was assessed across the posterior left atrial (LA) wall, occupying 33% ± 13%. VmAF distributions were (median [IQR]) 0.21 [0.14-0.35] mV in DE vs 0.52 [0.34-0.77] mV in non-DE regions. VSR distributions were 1.34 [0.65-2.48] mV in DE vs 2.37 [1.27-3.97] mV in non-DE. VmAF threshold of 0.35 mV yielded sensitivity of 75% and specificity of 79% in detecting MRI-DE compared with 63% and 67%, respectively, for VSR (1.8-mV threshold). CONCLUSION: The correlation between low-voltage and posterior LA MRI-DE is significantly improved when acquired during AF vs sinus rhythm. With adequate sampling, mean AF voltage is a reproducible marker reflecting the functional response to the underlying persistent AF substrate.


Assuntos
Fibrilação Atrial , Técnicas Eletrofisiológicas Cardíacas/métodos , Átrios do Coração , Imagem Cinética por Ressonância Magnética/métodos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/etiologia , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Correlação de Dados , Feminino , Fibrose/complicações , Fibrose/diagnóstico , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade
2.
J Am Coll Cardiol ; 62(9): 802-12, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23727084

RESUMO

OBJECTIVES: This study sought to evaluate the relationship between fibrosis imaged by delayed-enhancement (DE) magnetic resonance imaging (MRI) and atrial electrograms (Egms) in persistent atrial fibrillation (AF). BACKGROUND: Atrial fractionated Egms are strongly related to slow anisotropic conduction. Their relationship to atrial fibrosis has not yet been investigated. METHODS: Atrial high-resolution MRI of 18 patients with persistent AF (11 long-lasting persistent AF) was registered with mapping geometry (NavX electro-anatomical system (version 8.0, St. Jude Medical, St. Paul, Minnesota)). DE areas were categorized as dense or patchy, depending on their DE content. Left atrial Egms during AF were acquired using a high-density, 20-pole catheter (514 ± 77 sites/map). Fractionation, organization/regularity, local mean cycle length (CL), and voltage were analyzed with regard to DE. RESULTS: Patients with long-lasting persistent versus persistent AF had larger left atrial (LA) surface area (134 ± 38 cm(2) vs. 98 ± 9 cm(2), p = 0.02), a higher amount of atrial DE (70 ± 16 cm(2) vs. 49 ± 10 cm(2), p = 0.01), more complex fractionated atrial Egm (CFAE) extent (54 ± 16 cm(2) vs. 28 ± 15 cm(2), p = 0.02), and a shorter baseline AF CL (147 ± 10 ms vs. 182 ± 14 ms, p = 0.01). Continuous CFAE (CFEmean [NavX algorithm that quantifies Egm fractionation] <80 ms) occupied 38 ± 19% of total LA surface area. Dense DE was detected at the left posterior left atrium. In contrast, the right posterior left atrium contained predominantly patchy DE. Most CFAE (48 ± 14%) occurred at non-DE LA sites, followed by 41 ± 12% CFAE at patchy DE and 11 ± 6% at dense DE regions (p = 0.005 and p = 0.008, respectively); 19 ± 6% CFAE sites occurred at border zones of dense DE. Egms were less fractionated, with longer CL and lower voltage at dense DE versus non-DE regions: CFEmean: 97 ms versus 76 ms, p < 0.0001; local CL: 153 ms versus 143 ms, p < 0.0001; mean voltage: 0.63 mV versus 0.86 mV, p < 0.0001. CONCLUSIONS: Atrial fibrosis as defined by DE MRI is associated with slower and more organized electrical activity but with lower voltage than healthy atrial areas. Ninety percent of continuous CFAE sites occur at non-DE and patchy DE LA sites. These findings are important when choosing the ablation strategy in persistent AF.


Assuntos
Fibrilação Atrial/fisiopatologia , Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração/fisiopatologia , Idoso , Fibrilação Atrial/complicações , Fibrilação Atrial/cirurgia , Ablação por Cateter , Feminino , Fibrose , Átrios do Coração/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
3.
Circ Arrhythm Electrophysiol ; 5(1): 32-42, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22215849

RESUMO

BACKGROUND: Complex fractionated atrial electrograms (CFAE) are targets of atrial fibrillation (AF) ablation. Serial high-density maps were evaluated to understand the impact of activation direction and rate on electrogram (EGM) fractionation. METHODS AND RESULTS: Eighteen patients (9 persistent) underwent high-density, 3-dimensional, left-atrial mapping (>400 points/map) during AF, sinus (SR), and CS-paced (CSp) rhythms. In SR and CSp, fractionation was defined as an EGM with ≥4 deflections, although, in AF, CFE-mean <80 ms was considered as continuous CFAE. The anatomic distribution of CFAE sites was assessed, quantified, and correlated between rhythms. Mechanisms underlying fractionation were investigated by analysis of voltage, activation, and propagation maps. A minority of continuous CFAE sites displayed EGM fractionation in SR (15+/-4%) and CSp (12+/-8%). EGM fractionation did not match between SR and CSp at 70+/-10% sites. Activation maps in SR and CSp showed that wave collision (71%) and regional slow conduction (24%) caused EGM fractionation. EGM voltage during AF (0.59+/-0.58 mV) was lower than during SR and CSp (>1.0 mV) at all sites. During AF, the EGM voltage was higher at continuous CFAE sites than at non-CFAE sites (0.53 mV (Q1, Q3: 0.33 to 0.83) versus 0.30 mV (Q1, Q3: 0.18 to 0.515), P<0.00001). Global LA voltage in AF was lower in patients with persistent AF versus patients with paroxysmal AF (0.6+/-0.59 mV versus 1.12+/-1.32 mV, P<0.01). CONCLUSIONS: The distribution of fractionated EGMs is highly variable, depending on direction and rate of activation (SR versus CSp versus AF). Fractionation in SR and CSp rhythms mostly resulted from wave collision. All sites with continuous fractionation in AF displayed normal voltage in SR, suggesting absence of structural scar. Thus, many fractionated EGMs are functional in nature, and their sites dynamic.


Assuntos
Mapeamento Potencial de Superfície Corporal/métodos , Técnicas Eletrofisiológicas Cardíacas/métodos , Átrios do Coração/fisiopatologia , Processamento de Imagem Assistida por Computador , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/cirurgia , Ablação por Cateter , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
4.
Circ Arrhythm Electrophysiol ; 4(5): 770-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21690463

RESUMO

BACKGROUND: To address some of the shortcomings of existing remote catheter navigation systems (RNS), a new magnetic RNS has been developed that provides real-time navigation of catheters within the beating heart. The initial experience using this novel RNS in animals is described. METHODS AND RESULTS: A real-time, high-speed, closed-loop, magnetic RNS system (Catheter Guidance Control and Imaging) comprises 8 electromagnets that create unique dynamically shaped ("lobed") magnetic fields around the subject's torso. The real-time reshaping of these magnetic fields produces the appropriate 3D motion or change in direction of a magnetized electrophysiology ablation catheter within the beating heart. The RNS is fully integrated with the Ensite-NavX 3D electroanatomic mapping system (St Jude Medical) and allows for both joystick and automated navigation. Conventional and remote navigational mapping of the left atrium were performed using a 4-mm-tip ablation catheter in 10 pigs. A multielectrode transseptal sheath allowed for additional motion compensation. Linear and circumferential radiofrequency lesion sets were performed; in a subset of cases, selective pulmonary vein isolation was also performed. Recording and fluoroscopic equipments were unaffected by the magnetic fields generated by Catheter Guidance Control and Imaging. Automated mode navigation was highly reproducible (96±8.4% of attempts), accurate (1.9±0.4 mm from target site), and rapid (11.6±3.5 seconds to reach targets). At postmortem examination, radiofrequency lesion depth was 78.5±12.1% of atrial wall thickness. CONCLUSIONS: A new magnetic RNS using a dynamically shaped magnetic field concept can reproducibly and effectively reach target radiofrequency ablation points within the pig left atrium. Validation of the system in clinical settings is under way.


Assuntos
Ablação por Cateter/métodos , Catéteres , Técnicas Eletrofisiológicas Cardíacas/métodos , Campos Magnéticos , Robótica/métodos , Animais , Ablação por Cateter/instrumentação , Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas/instrumentação , Desenho de Equipamento , Átrios do Coração/cirurgia , Modelos Animais , Veias Pulmonares/cirurgia , Robótica/instrumentação , Suínos
5.
Pacing Clin Electrophysiol ; 34(7): 844-57, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21418250

RESUMO

BACKGROUND: Complex fractionated atrial electrograms (CFEs) have been described as a target during atrial fibrillation (AF) ablation; however, the mechanism leading to CFEs is poorly understood. We used noncontact mapping in a canine model of AF to determine the activation patterns in areas of CFEs. METHODS: Sustained AF was induced in 10 canines with 10-12 weeks of atrial tachy-pacing at 440 ppm. A roving mapping catheter and noncontact multielectrode array (MEA) were deployed in the left atrium (LA). NavX software was used to construct a contact bipolar CFE LA map. The MEA was then used to reconstruct wavefront propagation in proximity to CFE regions. Wavefront propagation was assessed during three separate recording segments for each site. RESULTS: There were 34 CFE regions identified (3.4/dog) and 102 noncontact CFE regional activation sequences studied. The CFE regions were stereotypically located at the junctions of (1) the left pulmonary vein (PV)/posterior LA, (2) right inferior PV/posterior LA, (3) right superior PV/anterior LA, and (4) the LA roof. The majority (47%) of CFE recordings were characterized by wavefront collision, usually between circulating LA wavefronts and entry/exit from the PVs. Thirty-eight (38%) CFE recordings were noted to be the central functional barrier of a reentrant wavefront. Ablation through CFE regions due to reentry led to AF termination and noninducibility in 3/5 animals. CONCLUSIONS: In this pacing-induced AF model, common causes of CFEs include: (1) wavefront collision, (2) conduction through channels of functional block, (3) reentry. The vast majority of these CFE regions were caused by wavefront collision rather than true "drivers" of AF.


Assuntos
Fibrilação Atrial/fisiopatologia , Técnicas Eletrofisiológicas Cardíacas , Animais , Modelos Animais de Doenças , Cães
6.
J Cardiovasc Electrophysiol ; 21(7): 766-72, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20132382

RESUMO

INTRODUCTION: The influence of the autonomic nervous system on the pathogenesis of complex fractionated atrial electrograms (CFAE) during atrial fibrillation (AF) is incompletely understood. This study evaluated the impact of pharmacological autonomic blockade on CFAE characteristics. METHODS AND RESULTS: Autonomic blockade was achieved with propanolol and atropine in 29 patients during AF. Three-dimensional maps of the fractionation degree were made before and after autonomic blockade using the Ensite Navx system. In 2 patients, AF terminated following autonomic blockade. In the remaining 27 patients, 20,113 electrogram samples of 5 seconds duration were collected randomly throughout the left atrium (10,054 at baseline and 10,059 after autonomic blockade). The impact of autonomic blockade on fractionation was assessed by blinded investigators and related to the type of AF and AF cycle length. Globally, CFAE as a proportion of all atrial electrogram samples were reduced after autonomic blockade: 61.6 +/- 20.3% versus 57.9 +/- 23.7%, P = 0.027. This was true/significant for paroxysmal AF (47 +/- 23% vs 40 +/- 22%, P = 0.003), but not for persistent AF (65 +/- 22% vs 62 +/- 25%, respectively, P = 0.166). Left atrial AF cycle length prolonged with autonomic blockade from 170 +/- 33 ms to 180 +/- 40 ms (P = 0.001). Fractionation decreases only in the 14 of 27 patients with a significant (>6 ms) prolongation of the AF cycle length (64 +/- 20% vs 59 +/- 24%, P = 0.027), whereas fractionation did not reduce when autonomic blockade did not affect the AF cycle length (58 +/- 21% vs 56 +/- 25%, P = 0.419). CONCLUSIONS: Pharmacological autonomic blockade reduces CFAE in paroxysmal AF, but not persistent AF. This effect appears to be mediated by prolongation of the AF cycle length.


Assuntos
Antagonistas Adrenérgicos beta/administração & dosagem , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Atropina/administração & dosagem , Sistema Nervoso Autônomo/efeitos dos fármacos , Técnicas Eletrofisiológicas Cardíacas , Antagonistas Muscarínicos/administração & dosagem , Propranolol/administração & dosagem , Idoso , Sistema Nervoso Autônomo/fisiopatologia , Feminino , Átrios do Coração/inervação , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes
7.
Heart Rhythm ; 5(3): 353-60, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18313591

RESUMO

BACKGROUND: Unlike the initial balloon ablation catheters that were designed to deliver ablation lesions within the pulmonary veins (PVs), the current balloon prototypes are fashioned to deliver lesions at the PV ostia. OBJECTIVE: Using electroanatomical mapping, this study evaluates the actual location of ablation lesions generated by cryo-based, laser-based, or ultrasound-based balloon catheters. METHODS: In a total of 14 patients with paroxysmal atrial fibrillation, PV isolation was performed using either a cryoballoon catheter (8 patients), laser catheter (4 patients) or ultrasound balloon catheter (2 patients). Patients underwent preprocedural computed tomographic/magnetic resonance imaging. An intracardiac ultrasound catheter was used to aid in positioning the balloon catheter at the PV ostium/antrum. In all patients, sinus rhythm bipolar voltage amplitude maps (using either CARTO with computed tomographic/magnetic resonance image integration or NavX mapping) were generated at baseline and after electrical PV isolation as confirmed by use of a circular mapping catheter. RESULTS: Electrical isolation was achieved in 100% of the PVs. Electroanatomical mapping revealed that after ablation with any of the 3 balloon catheters, the extent of isolation included the tubular portions of each PV to the level of the PV ostia. However, the PV antral portions were left largely unablated with all 3 balloon technologies. CONCLUSION: Using the current generation of balloon ablation catheters, electrical isolation occurs at the level of the PV ostia, but the antral regions are largely unablated.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Veias Pulmonares , Cateterismo , Crioterapia , Ecocardiografia , Técnicas Eletrofisiológicas Cardíacas , Endoscopia , Humanos , Terapia a Laser/métodos , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Resultado do Tratamento
8.
Circ Arrhythm Electrophysiol ; 1(1): 14-22, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19808389

RESUMO

BACKGROUND: Atrial tachycardia (AT) that develops after ablation of atrial fibrillation often poses a more difficult clinical situation than the index arrhythmia. This study details the use of an impedance-based electroanatomic mapping system (Ensite NavX) in concert with a specialized multielectrode mapping catheter for rapid, high-density atrial mapping. In this study, this activation mapping was combined with entrainment mapping to eliminate ATs developing late after atrial fibrillation ablation. METHODS AND RESULTS: All study patients developed AT after ablation for atrial fibrillation. The approach to AT ablation consisted of 4 steps: use of a 20-pole penta-array catheter to map the chamber rapidly during the rhythm of interest, analysis of the patterns of atrial activation to identify wave fronts of electric propagation, targeted entrainment at putative channels, and catheter ablation at these "isthmuses." All ablations were performed with irrigated radiofrequency ablation catheters. Forty-one ATs were identified in 17 patients (2.4+/-1.6 ATs per patient). Using the multielectrode catheter in conjunction with the Ensite NavX system, we created activation maps of 33 of 41 ATs (81%) (mean cycle length, 284+/-71 seconds) with a mean of 365+/-108 points per map and an average mapping time of 8+/-3 minutes. Of the 33 mapped ATs, 7 terminated either spontaneously or during entrainment maneuvers. Radiofrequency energy was used to attempt ablation of 26 ATs; 25 of 26 of the ATs (96%) were terminated successfully by ablation or catheter pressure. CONCLUSIONS: This study demonstrates a strategy for rapidly defining and eliminating the scar-related ATs typically encountered after ablation of atrial fibrillation.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter/efeitos adversos , Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração/cirurgia , Taquicardia Supraventricular/cirurgia , Idoso , Fibrilação Atrial/fisiopatologia , Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas/instrumentação , Desenho de Equipamento , Feminino , Átrios do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Reoperação , Taquicardia Supraventricular/etiologia , Taquicardia Supraventricular/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA