Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-28761499

RESUMO

Cordyceps militaris is used widely as a traditional medicine in East Asia. Although a few studies have attempted to elucidate the anticancer activities of C. militaris, the precise mechanism of C. militaris therapeutic effects is not fully understood. We examined the anticancer activities of C. militaris ethanolic extract (Cm-EE) and its cellular and molecular mechanisms. For this purpose, a xenograft mouse model bearing murine T cell lymphoma (RMA) cell-derived cancers was established to investigate in vivo anticancer mechanisms. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, immunoblotting analysis, and flow cytometric assay were employed to check in vitro cytotoxicity, molecular targets, and proapoptotic action of Cm-EE. Interestingly, cancer sizes and mass were reduced in a C. militaris-administered group. Levels of the phosphorylated forms of p85 and AKT were clearly decreased in the group administered with Cm-EE. This result indicated that levels of phosphoglycogen synthase kinase 3ß (p-GSK3ß) and cleaved caspase-3 were increased with orally administered Cm-EE. In addition, Cm-EE directly inhibited the viability of cultured RMA cells and C6 glioma cells. The number of proapoptotic cells was significantly increased in a Cm-EE treated group compared with a control group. Our results suggested that C. militaris might be able to inhibit cancer growth through regulation of p85/AKT-dependent or GSK3ß-related caspase-3-dependent apoptosis.

2.
Artigo em Inglês | MEDLINE | ID: mdl-25918546

RESUMO

The Cordyceps species have been widely used for treating various cancer diseases. Although the Cordyceps species have been widely known as an alternative anticancer remedy, which compounds are responsible for their anticancer activity is not fully understood. In this study, therefore, we examined the anticancer activity of 5 isolated compounds derived from the butanol fraction (Cb-BF) of Cordyceps bassiana. For this purpose, several cancer cell lines such as C6 glioma, MDA-MB-231, and A549 cells were employed and details of anticancer mechanism were further investigated. Of 5 compounds isolated by activity-guided fractionation from BF of Cb-EE, KTH-13, and 4-isopropyl-2,6-bis(1-phenylethyl)phenol, Cb-BF was found to be the most potent antiproliferative inhibitor of C6 glioma and MDA-MB-231 cell growth. KTH-13 treatment increased DNA laddering, upregulated the level of Annexin V positive cells, and altered morphological changes of C6 glioma and MDA-MB-231 cells. In addition, KTH-13 increased the levels of caspase 3, caspase 7, and caspase 9 cleaved forms as well as the protein level of Bax but not Bcl-2. It was also found that the phosphorylation of AKT and p85/PI3K was also clearly reduced by KTH-13 exposure. Therefore, our results suggest KTH-13 can act as a potent antiproliferative and apoptosis-inducing component from Cordyceps bassiana, contributing to the anticancer activity of this mushroom.

3.
Phytother Res ; 29(3): 381-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25414115

RESUMO

Gouania leptostachya DC. var. tonkinensis Pitard. Rhamnaceae is a traditional medicinal plant used in Thailand for treating various inflammatory symptoms. However, no systematic studies have been performed concerning the anti-inflammatory effects or molecular mechanisms of this plant. The immunopharmacological activities of a methanol extract from the leaves and twigs of G. leptostachya (Gl-ME) were elucidated based on the gastritis symptoms of mice treated with HCl/EtOH and the inflammatory responses, such as nitric oxide (NO) release and prostaglandin E2 (PGE2) production, from RAW264.7 cells and peritoneal macrophages. Moreover, inhibitory target molecules were also assessed. Gl-ME dose-dependently diminished the secretion of NO and PGE2 from LPS-stimulated RAW264.7 cells and peritoneal macrophages. The gastritis lesions of HCl/EtOH-treated mice were also attenuated after Gl-ME treatment. The extract (50 and 300 µg/mL) clearly reduced mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, nuclear translocation of p65/nuclear factor (NF)-κB, phosphorylation of p65-activating upstream enzymes, such as protein kinase B (AKT), inhibitor of κBα kinase (IKK), and inhibitor of κB (IκBα), and the enzymatic activity of Src. By HPLC analysis, one of the major components in the extract was revealed as resveratrol with NO and Src inhibitory activities. Moreover, this compound suppressed NO production and HCl/EtOH-induced gastric symptoms. Therefore, these results suggest that Gl-ME might be useful as an herbal anti-inflammatory medicine through the inhibition of Src and NF-κB activation pathways. The efficacy data of G. leptostachya also implies that this plant could be further tested to see whether it can be developed as potential anti-inflammatory preparation.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rhamnaceae/química , Estilbenos/farmacologia , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Gastrite/tratamento farmacológico , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resveratrol , Tailândia
4.
J Ethnopharmacol ; 159: 9-16, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25446596

RESUMO

ETHNOPHARMACOLOGIC RELEVANCE: Persicaria chinensis L. (Polygonaceae) [also synonym as Polygonum chimnense L.] has been used as Chinese traditional medicine to treat ulcer, eczema, stomach ache, and various inflammatory skin diseases. Due to no molecular pharmacological evidence of this anti-inflammatory herbal plant, we investigated the inhibitory mechanisms and target proteins contributing to the anti-inflammatory responses of the plant by using its methanolic extract (Pc-ME). MATERIALS AND METHODS: We used lipopolysaccharide (LPS)-treated macrophages and a murine HCl/EtOH-induced gastritis model to evaluate the anti-inflammatory activity of Pc-ME. HPLC analysis was employed to identify potential active components of this extract. Molecular approaches including kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes were used to confirm target enzymes. RESULTS: Pc-ME inhibited LPS-induced nitric oxide and prostaglandin E2 release by RAW264.7 macrophages and ameliorated HCl/EtOH-induced gastric ulcers in mice. The nuclear translocation of NF-κB (p65 and p50) was suppressed by Pc-ME. Phosphorylation of Src and Syk, their kinase activities, and formation of the signaling complex of these proteins were repressed by Pc-ME. Phosphorylation of p85 and Akt induced by Src or Syk overexpression was blocked by Pc-ME. In the mouse gastritis model, orally administered Pc-ME suppressed the increased phosphorylation of IκBα, Αkt, Src, and Syk. Caffeic acid, kaempferol, and quercetin, identified as major anti-inflammatory components of Pc-ME by HPLC, displayed strong nitric oxide inhibitory activity in LPS-treated macrophages. CONCLUSION: Pc-ME might play a pivotal ethnopharmacologic role as an anti-inflammatory herbal medicine by targeting Syk and Src kinases and their downstream transcription factor NF-κB.


Assuntos
Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Polygonum , Inibidores de Proteínas Quinases/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Etanol , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Células HEK293 , Humanos , Ácido Clorídrico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos , Macrófagos , Masculino , Metanol/química , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fitoterapia , Extratos Vegetais/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Solventes/química , Quinase Syk , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-25132860

RESUMO

The inhibitory activities of the Cordyceps pruinosa butanol fraction (Cp-BF) were investigated by determining inflammatory responses of lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells and by evaluating HCl/ethanol (EtOH)-triggered gastric ulcers in mice. The molecular mechanisms of the inhibitory effects of Cp-BF were investigated by identifying target enzymes using biochemical and molecular biological approaches. Cp-BF strongly inhibited the production of NO and TNF-α, release of reactive oxygen species (ROS), phagocytic uptake of FITC-dextran, and mRNA expression levels of interleukin (IL)-6, inducible NO synthase (iNOS), and tumour necrosis factor-alpha (TNF)-α in activated RAW264.7 cells. Cp-BF also strongly downregulated the NF-κB pathway by suppressing IKKß according to luciferase reporter assays and immunoblot analysis. Furthermore, Cp-BF blocked both increased levels of NF-κB-mediated luciferase activities and phosphorylation of p65/p50 observed by IKKß overexpression. Finally, orally administered Cp-BF was found to attenuate gastric ulcer and block the phosphorylation of IκBα induced by HCl/EtOH. Therefore, these results suggest that the anti-inflammatory activity of Cp-BF may be mediated by suppression of IKKα and its downstream NF-κB activation. Since our group has established the mass cultivation conditions by developing culture conditions for Cordyceps pruinosa, the information presented in this study may be useful for developing new anti-inflammatory agents.

6.
J Ethnopharmacol ; 152(3): 487-96, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24503036

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia asiatica Nakai (Compositae) is a representative herbal plant used to treat infection and inflammatory diseases. Although Artemisia asiatica is reported to have immunopharmacological activities, the mechanisms of these activities and the effectiveness of Artemisia asiatica preparations in use are not known. MATERIALS AND METHODS: To evaluate the anti-inflammatory activities of Artemisia asiatica ethanol extract (Aa-EE), we assayed nitric oxide (NO), tumor necrosis factor (TNF)-α, and prostaglandin E2 (PGE2) in macrophages and measured the extent of tissue injury in a model of gastric ulcer induced in mice by treatment with HCl in EtOH. Putative enzymatic mediators of Aa-EE activities were identified by nuclear fractionation, reporter gene assay, immunoprecipitation, immunoblotting, and kinase assay. Active compound in Aa-EE was identified using HPLC. RESULTS: Treatment of RAW264.7 cells and peritoneal macrophages with Aa-EE suppressed the production of NO, PGE2, and TNF-α in response to lipopolysaccharide (LPS) and induced heme oxygenase-1 expression. The Aa-EE also ameliorated symptoms of gastric ulcer in HCl/EtOH-treated mice. These effects were associated with the inhibition of nuclear translocation of nuclear factor (NF)-κB and activator protein (AP)-1, implying that the anti-inflammatory action of the Aa-EE occurred through transcriptional inhibition. The upstream regulatory signals Syk and Src for translocation of NF-κB and TRAF6 for AP-1 were identified as targets of this effect. Analysis of Aa-EE by HPLC revealed the presence of luteolin, known to inhibit NO and PGE2 activity. CONCLUSION: The anti-inflammatory activities attributed to Artemisia asiatica Nakai in traditional medicine may be mediated by luteolin through inhibition of Src/Syk/NF-κB and TRAF6/JNK/AP-1 signaling pathways.


Assuntos
Anti-Inflamatórios/farmacologia , Artemisia/química , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Dinoprostona/metabolismo , Modelos Animais de Doenças , Etanol/química , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Medicina Tradicional , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
J Ethnopharmacol ; 151(3): 1165-1174, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24378351

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Myrsine seguinii H. LÉVEILLÉ (syn. Rapanea neriifolia) (Myrsinaceae) is a medicinal plants traditionally used in Myanmar to treat infectious and inflammatory diseases. Since none of reports have systematically demonstrated the anti-inflammatory activity of this plant, we aimed to mechanistically understand the regulatory roles of the plant in inflammatory responses using the ethanolic extract of Myrsine seguinii (Ms-EE). MATERIALS AND METHODS: Activated macrophages and peritonitis symptoms induced by lipopolysaccharide (LPS) were employed. HPLC analysis was used to identify active components. To characterize direct target enzymes, kinase assay was established. RESULTS: Ms-EE inhibited the production of nitric oxide (NO) and prostaglandin (PG)E2 in RAW264.7 cells and peritoneal macrophages stimulated by LPS. This extract suppressed the mRNA expression of the inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 genes by down-regulating the activation of nuclear factor (NF)-κB and activator protein (AP-1). Interestingly, it was found that Ms-EE can directly suppress the enzyme activities of Syk, Src, and interleukin-1 receptor-associated kinase-1 (IRAK-1). Similarly, orally administered Ms-EE inhibited the phosphorylation of Src and Syk in peritoneal exudate-derived cells prepared from peritonitis. Finally, HPLC analysis clearly demonstrated that quercetin is a major active component with suppressing activity on the release of inflammatory mediators (NO and PGE2), and the enzyme activities of Src, Syk, and IRAK-1. CONCLUSION: Ms-EE containing quercetin negatively modulates macrophage-mediated in vitro inflammatory responses and LPS-induced peritonitis by blocking the Src/Syk/NF-κB and IRAK-1/AP-1 pathways, which contributes to its major ethnopharmacological use as an anti-inflammatory herbal medicine.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Peritonite/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Primulaceae , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dinoprostona/metabolismo , Etanol/química , Humanos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Peritonite/metabolismo , Fitoterapia , Folhas de Planta , Caules de Planta , Proteínas Tirosina Quinases/metabolismo , Solventes/química , Quinase Syk , Quinases da Família src/metabolismo
8.
J Ethnopharmacol ; 151(2): 960-9, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24342777

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cerbera manghas L. (Apocynaceae), a semi-mangrove medicinal plant distributed throughout tropical and subtropical countries, is traditionally known to possess analgesic, anti-inflammatory, anti-convulsant, cardiotonic, and hypotensive activity. In vitro and in vivo anti-inflammatory activities of a methanol extract of the leaves of Cerbera manghas and the underlying molecular mechanisms were investigated to validate the ethnopharmacological use of this plant. MATERIALS AND METHODS: The effect of Cerbera manghas methanol extract (Cm-ME) on the production of inflammatory mediators and the induction of HCl/EtOH-treated gastritis was explored using macrophages, HEK293 cells, and ICR mice. The molecular targets of this extract and potential active components in Cm-ME were also investigated. RESULTS: Cm-ME inhibited the production of nitric oxide (NO) in lipopolysaccharide (LPS)-treated RAW264.7 cells and peritoneal macrophages in a dose-dependent manner. This extract also suppressed the expression of NO synthase (iNOS) and cyclooxygenase (COX)-2. NF-κB-mediated enhancement of luciferase activity, nuclear translocation of p50 and p65, and phosphorylation of IκBα were markedly reduced by Cm-ME treatment. Direct enzyme assays, reporter gene assays, and immunoprecipitation analysis of kinases revealed Syk and Src as immunopharmacological targets of Cm-ME. Moreover, this extract strongly ameliorated the gastric symptoms induced by HCl/EtOH treatment of mice. Finally, HPLC analysis and pharmacological tests identified kaempferol as an active component of the extract with Src/Syk inhibitory activities. CONCLUSION: Inhibition of Syk/Src and the NF-κB pathway by kaempferol could play a key role in the anti-inflammatory pharmacological action of Cerbera manghas.


Assuntos
Anti-Inflamatórios/farmacologia , Apocynaceae , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Extratos Vegetais/farmacologia , Proteínas Tirosina Quinases/metabolismo , Quinases da Família src/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Apocynaceae/química , Linhagem Celular , Células Cultivadas , Ciclo-Oxigenase 2/genética , Etanol , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Células HEK293 , Humanos , Ácido Clorídrico , Quempferóis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Metanol/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo II/genética , Extratos Vegetais/uso terapêutico , RNA Mensageiro/metabolismo , Solventes/química , Quinase Syk
9.
Mediators Inflamm ; 2013: 761506, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23970815

RESUMO

Amentoflavone is a biflavonoid compound with antioxidant, anticancer, antibacterial, antiviral, anti-inflammatory, and UV-blocking activities that can be isolated from Torreya nucifera, Biophytum sensitivum, and Selaginella tamariscina. In this study, the molecular mechanism underlying amentoflavone's anti-inflammatory activity was investigated. Amentoflavone dose dependently suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW264.7 cells stimulated with the TLR4 ligand lipopolysaccharide (LPS; derived from Gram-negative bacteria). Amentoflavone suppressed the nuclear translocation of c-Fos, a subunit of activator protein (AP)-1, at 60 min after LPS stimulation and inhibited the activity of purified and immunoprecipitated extracellular signal-regulated kinase (ERK), which mediates c-Fos translocation. In agreement with these results, amentoflavone also suppressed the formation of a molecular complex including ERK and c-Fos. Therefore, our data strongly suggest that amentoflavone's immunopharmacological activities are due to its direct effect on ERK.


Assuntos
Biflavonoides/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Extratos Vegetais/farmacologia , Taxaceae/metabolismo , Animais , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Dinoprostona/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Inflamação , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Transcrição AP-1/metabolismo
10.
J Ethnopharmacol ; 146(2): 637-44, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23411023

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Archidendron clypearia Jack. (Fabaceae) is a representative ethnomedicinal herbal plant prescribed for various inflammatory diseases such as pharyngolaryngitis and tonsillitis. However, the pharmacology behind this plant's anti-inflammatory properties has not been fully understood. Therefore, in this study, the anti-inflammatory mechanism of a 95% methanol extract (Ac-ME) was explored. MATERIALS AND METHODS: The anti-inflammatory mechanism of Ac-ME on the AP-1 activation pathway, which plays a critical role in the production of prostaglandin (PG)E2 in RAW264.7 cells and peritoneal macrophages and in induction of acute gastritis caused by HCl/EtOH, was investigated using immunoblotting, immunoprecipitation analyses, and reporter gene activity assays. In particular, enzyme assays and HPLC analysis were employed to identify direct target enzymes of Ac-ME and to detect active chemical components from the plant extract. RESULTS: Ac-ME clearly reduced the nuclear levels of total and phospho-forms of c-Jun, FRA-1, and ATF-2. Consequently, this extract suppressed both the production of PGE2 in lipopolysaccharide (LPS)-activated RAW264.7 and peritoneal macrophage cells and PGE2-dependent induction of gastritis lesion in stomach under EtOH/HCl exposure. Analysis of AP-1 upstream signalling revealed that the AP-1 activation pathway consisting of IRAK1, TRAF6, TAK1, MKK3/6, and p38 was predominantly inhibited by Ac-ME. Similarly, this extract directly blocked the enzyme activity of IRAK1, indicating that this enzyme is an inhibitory target of Ac-ME and is involved in the suppression of the AP-1 pathway. HPLC analysis showed that quercetin, which inhibits PGE2 production, is an active component in Ac-ME. CONCLUSION: Ac-ME is an ethnomedicinal remedy with an IRAK1/p38/AP-1-targeted inhibitory property. Since AP-1 is a major inflammation-inducing transcription factor, the therapeutic potential of Ac-ME in other AP-1-mediated inflammatory symptoms will be further tested.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fabaceae , Inflamação/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Fator de Transcrição AP-1/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Dinoprostona/metabolismo , Etanol , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Gastrite/metabolismo , Ácido Clorídrico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Lipopolissacarídeos , Masculino , Metanol/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Fitoterapia , Extratos Vegetais/farmacologia , Folhas de Planta , Caules de Planta , Solventes/química
11.
J Ethnopharmacol ; 146(1): 205-13, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23295168

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rhodomyrtus tomentosa (Aiton) Hassk. is a representative Thai medicinal plant traditionally used in South Asian countries to relieve various inflammatory symptoms. However, no systematic studies on its anti-inflammatory activity and mechanisms have been reported. MATERIALS AND METHODS: The effect of the methanol extract from the leaves of this plant (Rt-ME) on the production of inflammatory mediators [nitric oxide (NO) and prostaglandin E2 (PGE2)] and the molecular mechanism of Rt-ME-mediated inhibition, including target enzymes, were studied with RAW264.7, peritoneal macrophage, and HEK293 cells. Additionally, the in vivo anti-inflammatory activity of this extract was evaluated with mouse gastritis and colitis models. RESULTS: Rt-ME clearly inhibited the production of NO and PGE2 in lipopolysaccharide (LPS)-activated RAW264.7 cells and peritoneal macrophages in a dose-dependent manner. According to RT-PCR, immunoblotting and immunoprecipitation analyses and a kinase assay with mRNA, whole cell extract, and nucleus lysates from RAW264.7 cells and mice, it was revealed that Rt-ME was capable of suppressing the activation of both nuclear factor (NF)-κB and activator protein (AP)-1 pathways by directly targeting Syk/Src and IRAK1/IRAK4. CONCLUSION: Rt-ME could have anti-inflammatory properties by suppressing Syk/Src/NF-kB and IRAK1/IRAK4/AP-1 pathways and will be further developed as a herbal remedy for preventive and/or curative purposes in various inflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Gastrite/tratamento farmacológico , Myrtaceae , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colite Ulcerativa/induzido quimicamente , Sulfato de Dextrana , Relação Dose-Resposta a Droga , Etanol , Gastrite/induzido quimicamente , Células HEK293 , Humanos , Ácido Clorídrico , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Metanol/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Fitoterapia , Extratos Vegetais/farmacologia , Solventes/química
12.
J Ethnopharmacol ; 145(2): 499-508, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23178662

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dryopteris crassirhizoma Nakai (Aspiadaceae) has been traditionally used as an herbal medicine for treating various inflammatory and infectious diseases such as tapeworm infestation, colds, and viral diseases. However, no systematic studies on the anti-inflammatory actions of Dryopteris crassirhizoma and its inhibitory mechanisms have been reported. We therefore aimed at exploring the anti-inflammatory effects of 95% ethanol extracts (Dc-EE) of this plant. MATERIALS AND METHODS: The anti-inflammatory effect of Dc-EE on the production of inflammatory mediators in RAW264.7 cells and HCl/EtOH-induced gastritis was examined. Inhibitory mechanisms were also evaluated by exploring activation of transcription factors, their upstream signalling, and target enzyme activities. Finally, the active components from this extract were also identified using HPLC system. RESULTS: Dc-EE diminished the production of nitric oxide (NO) and prostaglandin (PG)E(2) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells in a dose-dependent manner. Dc-EE also downregulated the levels of mRNA expression of pro-inflammatory genes such as inducible NO synthase (iNOS), cyclooxygenase (COX)-2, and TNF-α by inhibiting the activation of activator protein (AP-1) and IRF3. Indeed, the extract strongly blocked the activities of their upstream kinases ERK1 and TBK1. This extract also strongly ameliorated gastritis symptoms stimulated by HCl/EtOH in mice. According to HPLC fingerprinting, resveratrol, quercetin, and kampferol were identified from Dc-EE. CONCLUSION: Dc-EE displays strong anti-inflammatory activity by suppressing ERK/AP-1 and TBK1/IRF3 pathways, which contribute to its major ethno-pharmacological role as an anti-inflammatory and anti-infectious disease remedy.


Assuntos
Anti-Inflamatórios/farmacologia , Dryopteris , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Extratos Vegetais/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Dinoprostona/metabolismo , Etanol/química , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Células HEK293 , Humanos , Ácido Clorídrico , Fator Regulador 3 de Interferon/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos ICR , Óxido Nítrico/metabolismo , Fitoterapia , Extratos Vegetais/uso terapêutico , Raízes de Plantas , Solventes/química
13.
J Ethnopharmacol ; 145(2): 598-607, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23220195

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hopea odorata Roxb. (Dipterocarpaceae) is a representative Thai ethnopharmacological herbal plant used in the treatment of various inflammation-related diseases. In spite of its traditional use, systematic studies of its anti-inflammatory action have not been performed. MATERIALS AND METHODS: The inhibitory activities of a Hopea odorata methanol extract (Ho-ME) on the production of nitric oxide (NO), tumour necrosis factor (TNF)-α, and prostaglandin E(2) (PGE(2)) in RAW264.7 cells and peritoneal macrophages were investigated. The effects of Ho-ME on the gastritis symptoms induced by HCl/EtOH and on ear oedemas induced by arachidonic acid were also examined. Furthermore, to identify the immunopharmacological targets of this extract, nuclear fractionation, a reporter gene assay, immunoprecipitation, immunoblot analysis, and a kinase assay were employed. RESULTS: Ho-ME strongly inhibited the release of NO, PGE(2), and TNF-α in RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS). Ho-ME also clearly suppressed the gene expression of pro-inflammatory cytokines and chemokines, such as interferon (IFN)-ß, interleukin (IL)-12, and monocyte chemotactic protein-1 (MCP-1). By analysing the inhibited target molecules, Syk and Src were found to be suppressed in the inhibition of nuclear factor (NF)-κB pathway. In addition, the observed downregulation of activator protein (AP)-1 and cAMP response element-binding (CREB) was due to the direct inhibition of interleukin-1 receptor-associated kinase (IRAK)1 and IRAK4, which was also linked to the suppression of c-Jun N-terminal kinase (JNK) and p38. In agreement with the in vitro observations, this extract also ameliorated the inflammatory symptoms in EtOH/HCl-induced gastritis and arachidonic acid-induced ear oedemas in mice. CONCLUSION: Ho-ME has potential as a functional herbal remedy targeting Syk- and Src-mediated anti-inflammatory mechanisms. Future pre-clinical studies will be needed to investigate this possibility.


Assuntos
Anti-Inflamatórios/farmacologia , Dipterocarpaceae , Extratos Vegetais/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Citocinas/genética , Dinoprostona/metabolismo , Células HEK293 , Humanos , Lipopolissacarídeos , Macrófagos Peritoneais , Masculino , Metanol/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Proteínas Quinases/metabolismo , RNA Mensageiro/metabolismo , Solventes/química , Fator de Transcrição AP-1/metabolismo
14.
J Ethnopharmacol ; 143(2): 746-53, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22885130

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aralia continentalis Kitagawa (Araliaceae) is a representative ethnomedicinal herbal plant traditionally prescribed in Korea to relieve various inflammatory symptoms. However, the exact molecular mechanism of its anti-inflammatory activity has not been fully investigated. MATERIALS AND METHODS: The effect of the ethanol extract from the roots of this plant (Ac-EE) on the production of the inflammatory mediator nitric oxide (NO) was studied in RAW264.7 cells. Its effect on inflammatory symptoms (gastritis and hepatitis) in mice was also examined. In particular, the molecular inhibitory mechanism was analysed by measuring the activation of transcription factors and their upstream signalling and the kinase activity of target enzymes. RESULTS: Ac-EE dose-dependently suppressed NO production in lipopolysaccharide (LPS)-activated RAW264.7 cells. This extract also displayed curative activity against EtOH/HCl-induced gastritis and LPS-induced hepatitis in mice. Ac-EE-mediated anti-inflammatory activity was found to be at the transcriptional level, as it blocked the activation of the nuclear factor (NF)-κB pathway composed of Syk and Src, according to immunoblotting and immunoprecipitation analyses and a kinase assay with whole and nucleus lysates from RAW264.7 cells and mice. CONCLUSION: Ac-EE may be developed as a functional herbal remedy targeting Syk- and Src-mediated anti-inflammatory mechanisms. Future work using pre-clinical studies will be needed to investigate this possibility.


Assuntos
Anti-Inflamatórios/farmacologia , Aralia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Extratos Vegetais/farmacologia , Proteínas Tirosina Quinases/metabolismo , Quinases da Família src/metabolismo , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Dinoprostona/metabolismo , Etanol/química , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Gastrite/patologia , Células HEK293 , Hepatite/sangue , Hepatite/tratamento farmacológico , Humanos , Ácido Clorídrico , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , RNA Mensageiro/metabolismo , Solventes/química , Quinase Syk
15.
Biochem Pharmacol ; 83(11): 1540-51, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22406106

RESUMO

Novel anti-inflammatory compounds were synthesised by derivatization of militarin, a compound isolated from Cordyceps militaris that is an ethnopharmacologically well-known herbal medicine with multiple benefits such as anti-cancer, anti-inflammatory, anti-obesity, and anti-diabetic properties. In this study, we explored the in vitro and in vivo anti-inflammatory potencies of these compounds during inflammatory responses, their inhibitory mechanisms, and acute toxicity profiles. To do this, we studied inflammatory conditions using in vitro lipopolysaccharide-treated macrophages and several in vivo inflammatory models such as dextran sodium sulphate (DSS)-induced colitis, EtOH/HCl-induced gastritis, and arachidonic acid-induced ear oedema. Methods used included real-time PCR, immunoblotting analysis, immunoprecipitation, reporter gene assays, and direct kinase assays. Of the tested compounds, compound III showed the highest nitric oxide (NO) inhibitory activity. This compound also inhibited the production of prostaglandin (PG)E(2) at the transcriptional level by suppression of Syk/NF-κB, IKKɛ/IRF-3, and p38/AP-1 pathways in lipopolysaccharide (LPS)-activated RAW264.7 cells and peritoneal macrophages. Consistent with these findings, compound III strongly ameliorated inflammatory symptoms in colitis, gastritis, and ear oedema models. In acute toxicity tests, there were no significant differences in body and organ weights, serum parameters, and stomach lesions between the untreated and compound III-treated mice. Therefore, this compound has the potential to be served as a lead chemical for developing a promising anti-inflammatory drug candidate with multiple kinase targets.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores Enzimáticos/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Fosfotransferases/antagonistas & inibidores , Propilenoglicóis/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Linhagem Celular , Dinoprostona/genética , Dinoprostona/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Propilenoglicóis/química , Ratos
16.
J Ethnopharmacol ; 139(2): 616-25, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22182430

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polygonum hydropiper L. (Polygonaceae) has been traditionally used to treat various inflammatory diseases such as rheumatoid arthritis. However, no systematic studies on the anti-inflammatory actions of Polygonum hydropiper and its inhibitory mechanisms have been reported. This study is therefore aimed at exploring the anti-inflammatory effects of 99% methanol extracts (Ph-ME) of this plant. MATERIALS AND METHODS: The effects of Ph-ME on the production of inflammatory mediators in RAW264.7 cells and peritoneal macrophages were investigated. Molecular mechanisms underlying the effects, especially inhibitory effects, were elucidated by analyzing the activation of transcription factors and their upstream signalling, and by evaluating the kinase activities of target enzymes. Additionally, a dextran sulphate sodium (DSS)-induced colitis model was employed to see whether this extract can be used as an orally available drug. RESULTS: Ph-ME dose-dependently suppressed the release of nitric oxide (NO), tumour necrosis factor (TNF)-α, and prostaglandin (PG)E(2), in RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS). Ph-ME inhibited mRNA expression of pro-inflammatory genes such as inducible NO synthase (iNOS), cyclooxygenase (COX)-2, and TNF-α by suppressing the activation of nuclear factor (NF)-κB, activator protein (AP-1), and cAMP responsive element binding protein (CREB), and simultaneously inhibited its upstream inflammatory signalling cascades, including cascades involving Syk, Src, and IRAK1. Consistent with these findings, the extract strongly suppressed the kinase activities of Src and Syk. Based on HPLC analysis, quercetin, which inhibits NO and PGE(2) activities, was found as one of the active ingredients in Ph-ME. CONCLUSION: Ph-ME exerts strong anti-inflammatory activity by suppressing Src/Syk/NF-κB and IRAK/AP-1/CREB pathways, which contribute to its major ethno-pharmacological role as an anti-gastritis remedy.


Assuntos
Anti-Inflamatórios/farmacologia , Colite Ulcerativa/prevenção & controle , Macrófagos/efeitos dos fármacos , Metanol/química , Extratos Vegetais/farmacologia , Polygonum , Solventes/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Sulfato de Dextrana , Dinoprostona/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Polygonum/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinase Syk , Fatores de Tempo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Quinases da Família src/antagonistas & inibidores
17.
J Ethnopharmacol ; 139(2): 566-73, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22155395

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cinnamomum cassia Blume (Aceraceae) has been traditionally used to treat various inflammatory diseases such as gastritis. However, the anti-inflammatory mechanism of Cinnamomum cassia has not been fully elucidated. This study examined the anti-inflammatory mechanism of 95% ethanol extract (Cc-EE) of Cinnamomum cassia. MATERIALS AND METHODS: The effect of Cc-EE on the production of inflammatory mediators in RAW264.7 cells and peritoneal macrophages was investigated. Molecular mechanisms underlying the effects, especially inhibitory effects, was elucidated by analyzing the activation of transcription factors and their upstream signaling, and by evaluating the kinase activity of target enzymes. RESULTS: Cc-EE of Cinnamomum cassia diminished the production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and prostaglandin (PG)E(2), in lipopolysaccharide (LPS)-activated RAW264.7 cells and peritoneal macrophages in a dose-dependent manner. Cc-EE also blocked mRNA expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, and TNF-α by suppressing the activation of nuclear factor (NF)-κB, and simultaneously inhibited its upstream inflammatory signaling cascades, including spleen tyrosine kinase (Syk) and Src. Consistent with these findings, the extract directly blocked the kinase activities of Src and Syk. CONCLUSION: Cc-EE exerts strong anti-inflammatory activity by suppressing Src/Syk-mediated NF-κB activation, which contributes to its major ethno-pharmacological role as an anti-gastritis remedy. Future work will be focused on determining whether the extract can be further developed as an anti-inflammatory drug.


Assuntos
Anti-Inflamatórios/farmacologia , Cinnamomum aromaticum , Etanol/química , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Solventes/química , Quinases da Família src/antagonistas & inibidores , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Cinnamomum aromaticum/química , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Genes Reporter , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinase Syk , Transfecção , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Quinases da Família src/metabolismo
18.
Toxicol Appl Pharmacol ; 257(2): 165-73, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21933677

RESUMO

Cordycepin (3-deoxyadenosine), found in Cordyceps spp., has been known to have many therapeutic effects including immunomodulatory, anti-inflammatory, antimicrobial, and anti-aging effects. Moreover, anti-tumor and anti-metastatic effects of cordycepin have been reported, but the mechanism causing cancer cell death is poorly characterized. The present study was designed to investigate whether the mechanisms of cordycepin-induced cell death were associated with estrogen receptor in breast cancer cells. Exposure of both MDA-MB-231 and MCF-7 human breast cancer cells to cordycepin resulted in dose-responsive inhibition of cell growth and reduction in cell viability. The cordycepin-induced cell death in MDA-MB-231 cells was associated with several specific features of the mitochondria-mediated apoptotic pathway, which was confirmed by DNA fragmentation, TUNEL, and biochemical assays. Cordycepin also caused a dose-dependent increase in mitochondrial translocation of Bax, triggering cytosolic release of cytochrome c and activation of caspases-9 and -3. Interestingly, MCF-7 cells showed autophagy-associated cell death, as observed by the detection of an autophagosome-specific protein and large membranous vacuole ultrastructure morphology in the cytoplasm. Cordycepin-induced autophagic cell death has applications in treating MCF-7 cells with apoptotic defects, irrespective of the ER response. Although autophagy has a survival function in tumorigenesis of some cancer cells, autophagy may be important for cordycepin-induced MCF-7 cell death. In conclusion, the results of our study demonstrate that cordycepin effectively kills MDA-MB-231 and MCF-7 human breast cancer cell lines in culture. Hence, further studies should be conducted to determine whether cordycepin will be a clinically useful, ER-independent, chemotherapeutic agent for human breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Desoxiadenosinas/farmacologia , Desoxiadenosinas/uso terapêutico , Receptores de Estrogênio/fisiologia , Apoptose/fisiologia , Autofagia/fisiologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/ultraestrutura , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos
19.
Pharmazie ; 66(1): 58-62, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21391436

RESUMO

Cordyceps species have been known since long as a multi-utility ethnomedicinal herbal in Korea, China and Japan. It has been reported to exhibit a number of properties such as anti-oxidative, anti-cancer, antiinflammatory, anti-diabetic, and anti-obesity effects. In a previously conducted study, we had demonstrated that the ethanol extract of Cordyceps bassiana was able to suppress the production of interleukin (IL)-12 and interferon (IFN)-gamma in macrophages and T lymphocytes. In this study, we were able to further explore the molecular basis of its inhibitory mechanism using a butanol fraction of this herbal (Cb-BF) preparation. Similarly, this fraction also blocked the expression of cytokines such as IL-12 and tumor necrosis factor (TNF)-alpha as well as the proliferation of splenic lymphocytes and their production of IFN-gamma but not IL-4. Cb-BF suppressed the luciferase activities that are mediated by nuclear factor (NF)-kappaB, activator protein (AP)-1, and signal transducers and activators of transcription (STAT)-1. In agreement with this, these fractions diminished the translocation of the transcription factors into the nucleus. The study also demonstrated that the upstream signaling events for the activation of these factors such as spleen tyrosine kinase (Syk), janus kinase (JAK)-2, and extracellular signal-regulated kinase (ERK) were suppressed. Therefore, these results suggest that the butanol extract of Cordyceps bassiana may contain more than one active component capable of inhibiting the inflammatory signaling cascade and this can be considered as a potential candidate for treatment of diseases that require suppression of immune system.


Assuntos
Cordyceps/química , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Animais , Western Blotting , Butanóis , Corantes , Genes Reporter/efeitos dos fármacos , Humanos , Interferon gama/biossíntese , Interleucina-12/biossíntese , Interleucina-4/biossíntese , Lipopolissacarídeos/farmacologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Extratos Vegetais/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Solventes , Baço/citologia , Baço/efeitos dos fármacos , Sais de Tetrazólio , Tiazóis , Fatores de Transcrição , Fator de Necrose Tumoral alfa/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese
20.
J Ethnopharmacol ; 134(2): 493-500, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21195756

RESUMO

ETHNOPHARMACOLOGICAL SIGNIFICANCE: Sorbus commixta Hedl. (Rosaceae) is a well known traditionally valuable medicinal plant in Korea, China and Japan. This plant has been prescribed for long time for various inflammatory symptoms such as asthma, bronchitis, gastritis and dropsy. AIM OF STUDY: Although a number of pharmacological properties have already been demonstrated, the anti-inflammatory effect of this plant and its associated molecular mechanisms has not yet been fully investigated. MATERIALS AND METHODS: In order to address the anti-inflammatory activity of S. commixta water extract (Sc-WE), lipopolysaccharide (LPS)-stimulated macrophages were employed and production of inflammatory mediators by these cells were evaluated. RESULTS: Sc-WE significantly suppressed the production of nitric oxide (NO) and prostaglandin (PG)E(2) in a dose-dependent manner and blocked ear edema formation induced by arachidonic acid in mouse. In addition, this extract effectively diminished the mRNA levels of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, indicating that the inhibition occurs at the transcriptional level. Interestingly, Sc-WE remarkably blocked NF-κB translocation and its upstream signaling events by inhibition of κBα (IκBα), IκBα kinase (IKK), Akt (protein kinase B), phosphoinositide-dependent kinase 1 (PDK1), p85/phosphoinositide-3-kinase (PI3K), as per the results obtained from the reporter gene assay and immunoblotting analysis. More intriguingly, Sc-WE suppressed activities of Src and Syk kinases as well as their phosphorylation levels without altering molecular complex formation between them and toll like receptor (TLR)4 or MyD88, an adaptor protein of TLR4-mediated signaling. CONCLUSION: Therefore, our results suggest that Sc-WE can be developed as a potent anti-inflammatory remedy, acting by suppressing the inflammatory signaling cascade composed of Src, Syk, and NF-κB.


Assuntos
Anti-Inflamatórios/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Inflamação/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Sorbus , Animais , Anti-Inflamatórios/farmacologia , Ácido Araquidônico , Relação Dose-Resposta a Droga , Edema/tratamento farmacológico , Ásia Oriental , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Medicina Tradicional , Camundongos , Camundongos Endogâmicos ICR , Fator 88 de Diferenciação Mieloide/metabolismo , Fosforilação , Extratos Vegetais/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sorbus/química , Quinase Syk , Receptor 4 Toll-Like/metabolismo , Quinases da Família src/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA