Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 66(12): e0120122, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36374087

RESUMO

Several plant-derived natural products with anti-SARS-CoV-2 activity have been evaluated for the potential to serve as chemotherapeutic agents for the treatment of COVID-19. Codonopsis lanceolata (CL) has long been used as a medicinal herb in East Asian countries to treat inflammatory diseases of the respiratory system but its antiviral activity has not been investigated so far. Here, we showed that CL extract and its active compound lancemaside A (LA) displayed potent inhibitory activity against SARS-CoV-2 infection using a pseudotyped SARS-CoV-2 entry assay system. We demonstrated that this inhibitory effect of LA was due to the alteration of membrane cholesterol and blockade of the membrane fusion between SARS-CoV-2 and host cells by filipin staining and cell-based membrane fusion assays. Our findings also showed that LA, as a membrane fusion blocker, could impede the endosomal entry pathway of SARS-CoV-2 and its variants of concern (VOCs), including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529), in Vero cells with similar of IC50 values ranging from 2.23 to 3.37 µM as well as the TMPRSS2-mediated viral entry pathway in A549 cells overexpressing ACE2 and TMPRSS2 with IC50 value of 3.92 µM. We further demonstrated that LA could prevent the formation of multinucleated syncytia arising from SARS-CoV-2 spike protein-mediated membrane fusion. Altogether, the findings reported here suggested that LA could be a broad-spectrum anti-SARS-CoV-2 therapeutic agent by targeting the fusion of viral envelope with the host cell membrane.


Assuntos
COVID-19 , Codonopsis , Animais , Chlorocebus aethiops , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Células Vero , Codonopsis/metabolismo , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus
2.
J Enzyme Inhib Med Chem ; 36(1): 2016-2024, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34514924

RESUMO

Many studies have focussed on modulating the activity of γ-aminobutyric acid transaminase (GABA-T), a GABA-catabolizing enzyme, for treating neurological diseases, such as epilepsy and drug addiction. Nevertheless, human GABA-T synthesis and purification have not been established. Thus, biochemical and drug design studies on GABA-T have been performed by using porcine GABA-T mostly and even bacterial GABA-T. Here we report an optimised protocol for overexpression of 6xHis-tagged human GABA-T in human cells followed by a two-step protein purification. Then, we established an optimised human GABA-T (0.5 U/mg) activity assay. Finally, we compared the difference between human and bacterial GABA-T in sensitivity to two irreversible GABA-T inhibitors, gabaculine and vigabatrin. Human GABA-T in homodimeric form showed 70-fold higher sensitivity to vigabatrin than bacterial GABA-T in multimeric form, indicating the importance of using human GABA-T. In summary, our newly developed protocol can be an important first step in developing more effective human GABA-T modulators.


Assuntos
4-Aminobutirato Transaminase/biossíntese , 4-Aminobutirato Transaminase/isolamento & purificação , 4-Aminobutirato Transaminase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
3.
Exp Mol Med ; 53(5): 956-972, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34035463

RESUMO

An ongoing pandemic of coronavirus disease 2019 (COVID-19) is now the greatest threat to global public health. Herbal medicines and their derived natural products have drawn much attention in the treatment of COVID-19, but the detailed mechanisms by which natural products inhibit SARS-CoV-2 have not been elucidated. Here, we show that platycodin D (PD), a triterpenoid saponin abundant in Platycodon grandiflorum (PG), a dietary and medicinal herb commonly used in East Asia, effectively blocks the two main SARS-CoV-2 infection routes via lysosome- and transmembrane protease serine 2 (TMPRSS2)-driven entry. Mechanistically, PD prevents host entry of SARS-CoV-2 by redistributing membrane cholesterol to prevent membrane fusion, which can be reinstated by treatment with a PD-encapsulating agent. Furthermore, the inhibitory effects of PD are recapitulated by the pharmacological inhibition or gene silencing of NPC1, which is mutated in patients with Niemann-Pick type C (NPC) displaying disrupted membrane cholesterol distribution. Finally, readily available local foods or herbal medicines containing PG root show similar inhibitory effects against SARS-CoV-2 infection. Our study proposes that PD is a potent natural product for preventing or treating COVID-19 and that briefly disrupting the distribution of membrane cholesterol is a potential novel therapeutic strategy for SARS-CoV-2 infection.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Saponinas/farmacologia , Serina Endopeptidases/metabolismo , Triterpenos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Antivirais/química , COVID-19/metabolismo , Linhagem Celular , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Modelos Moleculares , Platycodon/química , SARS-CoV-2/fisiologia , Saponinas/química , Triterpenos/química
4.
Am J Chin Med ; 49(3): 767-784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33657989

RESUMO

Gliomas are the mostly observed form of primary brain tumor, and glioblastoma multiforme (GBM) shows the highest incidence. The survival rate of GBM is fairly poor; thus, discovery of effective treatment options is required. Among several suggested targets for therapy, the Axl/IL-6/STAT3 signaling pathway has gained recent interest because of its important role within cancer microenvironment. Quercetin, a plant flavonoid, is well known for its anticancer action. However, the effect of quercetin on Axl has never been reported. Quercetin treatment significantly reduced cell viability in two GBM cell lines of U87MG and U373MG while keeping 85% of normal astrocytes alive. Further western blot assays suggested that quercetin induces apoptosis but does not affect Akt or mitogen-activated protein kinases, factors related to cell proliferation. Quercetin also decreased IL-6 release and phosphorylation of STAT3 in GBM cells. In addition, gene expression, protein expression, and half-life of synthesized Axl protein were all suppressed by quercetin. By applying shRNA for knockdown of Axl, we could confirm that the role of Axl was crucial in the apoptotic effect of quercetin on GBM cells. In conclusion, we suggest quercetin as a potential anticancer agent, which may improve cancer microenvironment of GBM via the Axl/IL-6/STAT3 pathway.


Assuntos
Antineoplásicos Fitogênicos , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Interleucina-6/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Quercetina/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Humanos , Fitoterapia , Quercetina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Receptor Tirosina Quinase Axl
5.
Sci Rep ; 10(1): 19834, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199761

RESUMO

The root of Platycodon grandiflorum (PG) has long been used as a traditional herbal medicine in Asian country. Platycondin D (PD), triterpenoid saponin that is a main constituent of PG, exhibits various biological activities such as anti-inflammatory, anti-oxidant, anti-diabetic, and anti-cancer effects. A previous study showed that PD had cholesterol-lowering effects in mice that develop hypercholesterolemia, but the underlying molecular mechanisms have not been elucidated during the last decade. Here, we demonstrated that both PG and PD markedly increased levels of cell surface low-density lipoprotein receptor (LDLR) by down-regulation of the E3 ubiquitin ligase named inducible degrader of the LDLR (IDOL) mRNA, leading to the enhanced uptake of LDL-derived cholesterol (LDL-C) in hepatic cells. Furthermore, cycloheximide chase analysis and in vivo ubiquitination assay revealed that PD increased the half-life of LDLR protein by reducing IDOL-mediated LDLR ubiquitination. Finally, we demonstrated that treatment of HepG2 cells with simvastatin in combination with PG and PD had synergistic effects on the improvement of LDLR expression and LDL-C uptake. Together, these results provide the first molecular evidence for anti-hypercholesterolemic activity of PD and suggest that PD alone or together with statin could be a potential therapeutic option in the treatment of atherosclerotic cardiovascular disease.


Assuntos
LDL-Colesterol/metabolismo , Hepatócitos/metabolismo , Platycodon/química , Receptores de LDL/metabolismo , Saponinas/farmacologia , Triterpenos/farmacologia , Ubiquitina-Proteína Ligases/genética , Linhagem Celular , Cicloeximida/farmacologia , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Meia-Vida , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Raízes de Plantas/química , Sinvastatina/farmacologia , Ubiquitinação
6.
Am J Chin Med ; 47(3): 691-705, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30974965

RESUMO

Scutellaria Radix (SR) is an herb traditionally used in Asian countries to treat inflammatory diseases. Recent studies report that SR exhibits anticancer activities in various types of tumors. In this study, we investigated the apoptotic and autophagic effect of SR in non-small cell lung cancer (NSCLC), the leading cause of cancer-associated death. Treatment of SR in two NSCLC cell lines, H358 and H2087 cells resulted in suppressed cell viability. Western blot assays showed increased expressions of Bcl-2-associated X protein (Bax), cleaved-caspase 3 and cleaved-Poly ADP ribose polymerase (PARP), key factors of apoptosis. Co-treatment of SR with a caspase inhibitor Z-VAD led to nullification of the antiproliferative effect, suggesting the role of apoptosis in the action mechanism of SR. Further experiments revealed autophagy was involved in the effect of SR. SR-treated NSCLC cells expressed increased ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II/LC3-I. When chloroquine was co-treated with SR, this ratio was further increased, indicating SR treatment induced autophagy in NSCLC cells. Interestingly, loss of autophagy by 3-Methyladenine (3-MA) co-treatment suppressed SR-induced apoptosis. We then evaluated the relevance of AMP-activated protein kinase (AMPK) in the autophagic/apoptotic process in NSCLC by SR treatment. Immunoblot assays showed increased phosphorylation of AMPK α and P70-S6 kinase in SR-treated H358 and H2087 cells. Under AMPK-inhibited conditions by compound C, SR treatment failed to induce both autophagy and apoptosis. Taken together, this study identifies the positive effect of SR in H358 and H2087 cells by inducing apoptosis via AMPK-dependent autophagy. Thus, our results suggest the potential use of SR as a novel therapeutic strategy for NSCLC patients.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Extratos Vegetais/farmacologia , Scutellaria baicalensis/química , Humanos , Estimulação Química , Células Tumorais Cultivadas
7.
BMC Complement Altern Med ; 18(1): 215, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005655

RESUMO

BACKGROUND: Jawoongo is an herbal mixture used in traditional medicine to treat skin diseases. This study aimed to investigate whether Jawoongo ameliorates Atopic dermatitis (AD)-like pathology in mice and to understand its underlying cellular mechanisms. METHODS: AD was induced by 2, 4-Dinitrocholrlbenzene (DNCB) in BALB/c mice. Treatment with Jawoongo was assessed to study the effect of Jawoongo on AD in mice. Histological Analysis, blood analysis, RT-PCR, western blot analysis, ELISA assay and cell viability assay were performed to verify the inhibitory effect of Jawoongo on AD in mice. RESULTS: We found that application of Jawoongo in an ointment form on AD-like skin lesions on DNCB-exposed BALB/c mice reduced skin thickness and ameliorated skin infiltration with inflammatory cells, mast cells and CD4+ cells. The ointment also reduced the mRNA levels of IL-2, IL-4, IL-13 and TNF-α in the sensitized skin. Leukocyte counts and the levels of IgE, IL-6, IL-10 and IL-12 were decreased in the blood of the DNCB-treated mice. Furthermore, studies on cultured cells demonstrated that Jawoongo exhibits anti-inflammatory activities, including the suppression of proinflammatory cytokine expression, nitric oxide (NO) production, and inflammation-associated molecule levels in numerous types of agonist-stimulated innate immune cell, including human mast cells (HMC-1), murine macrophage RAW264.7 cells, and splenocytes isolated from mice. CONCLUSION: These findings indicate that Jawoongo alleviates DNCB-induced AD-like symptoms via the modulation of several inflammatory responses, indicating that Jawoongo might be a useful drug for the treatment of AD.


Assuntos
Angelica/química , Anti-Inflamatórios/administração & dosagem , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Dinitroclorobenzeno/toxicidade , Lithospermum/química , Extratos Vegetais/administração & dosagem , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/genética , Humanos , Imunoglobulina E/imunologia , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
8.
BMC Complement Altern Med ; 17(1): 186, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28359265

RESUMO

BACKGROUND: Allergic diseases including allergic rhinitis, asthma, and atopic dermatitis are increasing worldwide. Common medications used to treat these inflammatory disorders are anti-histamines and corticosteroids, but they have their own limitations such as short duration and severe side effects. Thus, interest in complementary and alternative medicine is continually growing. Here, we investigate the anti-inflammatory mechanisms of Tonggyu-tang (TGT), a traditional Korean medicine that has been used to treat patients with allergic nasal disorders. METHODS: We measured mRNA expressions and production of pro-inflammatory cytokines such as interleukin (IL)-4, IL-6, IL-8 and tumor necrosis factor alpha (TNF-α) by RT-PCR and ELISA assays in HMC-1 (human mast cell line-1) and HaCaT cells, immortalized human keratinocytes. Moreover, we evaluated the effect of TGT on two major inflammation-related pathways, mitogen activated protein kinase (MAPK) and NF-κB signaling pathway in these two cells. RESULTS: Our results revealed that that TGT significantly reduced the expression and production of inflammatory cytokines such as IL-4, IL-6, IL-8, and TNF-α in the agonist-treated HMC-1 and HaCaT cells. We also found that TGT suppressed MAPK signaling pathway including extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38), and c-Jun N-terminal kinase (JNK) as well as NF-κB pathway, which are known to regulate inflammatory cytokine expression. CONCLUSION: Taken together, our results demonstrate that TGT inhibits expression of pro-inflammatory cytokines by suppressing MAPK and NF-kB pathway in both mast cells and keratinocytes, suggesting the potential use of TGT in treating allergic inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Citocinas/imunologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Queratinócitos/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , NF-kappa B/imunologia , Extratos Vegetais/farmacologia , Anti-Inflamatórios/química , Linhagem Celular , Citocinas/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Queratinócitos/imunologia , Mastócitos/imunologia , Medicina Tradicional Coreana , NF-kappa B/genética , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA