Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Integr Biol (Camb) ; 5(5): 828-34, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23546334

RESUMO

Immunoisolation membranes have been developed for various cell encapsulations for therapeutic purposes. However effective encapsulation systems have been hindered by low oxygen (O2) permeability or imperfect immunoisolation caused by either low porosity or non-uniform pore geometry. Here, we report an encapsulation method that uses an anodic aluminum oxide membrane formed by polyethylene oxide self-assembly to obtain nanochannels with both high selectivity in excluding immune molecules and high permeability of nutrients such as glucose, insulin, and O2. The extracorporeal encapsulation system composed of these membranes allows O2 flux to meet the O2 demand of pancreatic islets of Langerhans and provides excellent in vitro viability and functionality of islets.


Assuntos
Óxido de Alumínio/farmacologia , Ilhotas Pancreáticas/citologia , Membranas Artificiais , Nanotecnologia/métodos , Animais , Separação Celular/métodos , Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley
2.
ACS Appl Mater Interfaces ; 4(10): 5074-8, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22999083

RESUMO

Superhydrophilic and superhydrophobic surfaces were studied with an eye to industrial applications and use as research tools. Conventional methods involve complex and time-consuming processes and cannot feasibly produce large-area three-dimensional surfaces. Here, we report robust and large-area alumina nanowire structures with superhydrophobic or superhydrophilic properties, generated by an inexpensive single-step anodization process that can routinely create arbitrary three-dimensional shapes. This process is expected to open up diverse applications.


Assuntos
Óxido de Alumínio/química , Nanofios/química , Eletrodos , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
3.
Lab Chip ; 11(6): 1049-53, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21283907

RESUMO

Nanochannel membranes have been fabricated for many biological and engineering applications. However, due to low-throughput process, high cost, unsuitable pore geometries, and low chemical/mechanical stability, we could not have obtained optimized nanochannel membranes for biomedical treatments as well as a novel building block for artificial cell membranes. Here, we report a PEO-functionalized straight nanochannel array based on a self-organized porous alumina for a novel biofilter with antifouling, superior immunoprotection and high permeability of nutrients, which have excellent in vivo mechanical stability. Thus, our strategy may provide great advantages in novel membrane biotechnologies such as biofiltration, artificial cells, and drug delivery.


Assuntos
Óxido de Alumínio/química , Nanofibras/química , Polietilenoglicóis/química , Difusão , Humanos , Imunoglobulina G/química , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA