Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cells ; 12(11)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37296633

RESUMO

Astrocytes play a key role in brain functioning by providing energy to neurons. Increased astrocytic mitochondrial functions by Korean red ginseng extract (KRGE) have been investigated in previous studies. KRGE administration induces hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in astrocytes in the adult mouse brain cortex. VEGF expression can be controlled by transcription factors, such as the HIF-1α and estrogen-related receptor α (ERRα). However, the expression of ERRα is unchanged by KRGE in astrocytes of the mouse brain cortex. Instead, sirtuin 3 (SIRT3) expression is induced by KRGE in astrocytes. SIRT3 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that resides in the mitochondria and maintains mitochondrial homeostasis. Mitochondrial maintenance requires oxygen, and active mitochondria enhance oxygen consumption, resulting in hypoxia. The effects of SIRT3 on HIF-1α-mediated mitochondria functions induced by KRGE are not well established. We aimed to investigate the relationship between SIRT3 and HIF-1α in KRGE-treated normoxic astrocyte cells. Without changing the expression of the ERRα, small interfering ribonucleic acid targeted for SIRT3 in astrocytes substantially lowers the amount of KRGE-induced HIF-1α proteins. Reduced proline hydroxylase 2 (PHD2) expression restores HIF-1α protein levels in SIRT3-depleted astrocytes in normoxic cells treated with KRGE. The translocation of outer mitochondrial membranes 22 (Tom22) and Tom20 is controlled by the SIRT3-HIF-1α axis, which is activated by KRGE. KRGE-induced Tom22 increased oxygen consumption and mitochondrial membrane potential, as well as HIF-1α stability through PHD2. Taken together, in normoxic astrocytes, KRGE-induced SIRT3 activated the Tom22-HIF-1α circuit by increasing oxygen consumption in an ERRα-independent manner.


Assuntos
Panax , Sirtuína 3 , Camundongos , Animais , Membranas Mitocondriais/metabolismo , Sirtuína 3/metabolismo , Astrócitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Panax/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
2.
J Ginseng Res ; 46(3): 408-417, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600778

RESUMO

Background: Korean Red Ginseng extract (KRGE) has been used as a health supplement and herbal medicine. Astrocytes are one of the key cells in the central nervous system (CNS) and have bioenergetic potential as they stimulate mitochondrial biogenesis. They play a critical role in connecting the brain vasculature and nerves in the CNS. Methods: Brain samples from KRGE-administered mice were tested using immunohistochemistry. Treatment of human brain astrocytes with KRGE was subjected to assays such as proliferation, cytotoxicity, Mitotracker, ATP production, and O2 consumption rate as well as western blotting to demonstrate the expression of proteins related to mitochondria functions. The expression of hypoxia-inducible factor-1α (HIF-1α) was diminished utilizing siRNA transfection. Results: Brain samples from KRGE-administered mice harbored an increased number of GFAP-expressing astrocytes. KRGE triggered the proliferation of astrocytes in vitro. Enhanced mitochondrial biogenesis induced by KRGE was detected using Mitotracker staining, ATP production, and O2 consumption rate assays. The expression of proteins related to mitochondrial electron transport was increased in KRGE-treated astrocytes. These effects were blocked by HIF-1α knockdown. The factors secreted from KRGE-treated astrocytes were determined, revealing the expression of various cytokines and growth factors, especially those related to angiogenesis and neurogenesis. KRGE-treated astrocyte conditioned media enhanced the differentiation of adult neural stem cells into mature neurons, increasing the migration of endothelial cells, and these effects were reduced in the background of HIF-1α knockdown. Conclusion: Our findings suggest that KRGE exhibits prophylactic potential by stimulating astrocyte mitochondrial biogenesis through HIF-1α, resulting in improved neurovascular function.

3.
Cells ; 11(5)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269514

RESUMO

Astrocytes display regenerative potential in pathophysiologic conditions. In our previous study, heme oxygenase-1 (HO-1) promoted astrocytic mitochondrial functions in mice via the peroxisome-proliferator-activating receptor-γ coactivator-1α (PGC-1α) pathway on administering Korean red ginseng extract (KRGE) after traumatic brain injury (TBI). In this study, KRGE promoted astrocytic mitochondrial functions, assessed with oxygen consumption and adenosine triphosphate (ATP) production, which could be regulated by the translocase of the outer membrane of mitochondria 20 (Tom20) pathway with a PGC-1α-independent pathway. The HO-1-Tom20 axis induced an increase in mitochondrial functions, detected with cytochrome c oxidase subunit 2 and cytochrome c. HO-1 crosstalk with nicotinamide phosphoribosyltransferase was concomitant with the upregulated nicotinamide adenine dinucleotide (NAD)/NADH ratio, thereby upregulating NAD-dependent class I sirtuins. In adult neural stem cells (NSCs), KRGE-treated, astrocyte-conditioned media increased oxygen consumption and Tom20 levels through astrocyte-derived HO-1. HO inactivation by Sn(IV) protoporphyrin IX dichloride in TBI mice administered KRGE decreased neuronal markers, together with Tom20. Thus, astrocytic HO-1 induced astrocytic mitochondrial functions. HO-1-related, astrocyte-derived factors may also induce neuronal differentiation and mitochondrial functions of adult NSCs after TBI. KRGE-mediated astrocytic HO-1 induction may have a key role in repairing neurovascular function post-TBI in peri-injured regions by boosting astrocytic and NSC mitochondrial functions.


Assuntos
Lesões Encefálicas Traumáticas , Células-Tronco Neurais , Panax , Animais , Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Heme Oxigenase-1/metabolismo , Camundongos , Mitocôndrias/metabolismo , NAD/metabolismo , Células-Tronco Neurais/metabolismo , Panax/metabolismo
4.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884886

RESUMO

Heme oxygenase-1 (HO-1) exerts beneficial effects, including angiogenesis and energy metabolism via the peroxisome proliferator-activating receptor-γ coactivator-1α (PGC-1α)-estrogen-related receptor α (ERRα) pathway in astrocytes. However, the role of Korean red ginseng extract (KRGE) in HO-1-mediated mitochondrial function in traumatic brain injury (TBI) is not well-elucidated. We found that HO-1 was upregulated in astrocytes located in peri-injured brain regions after a TBI, following exposure to KRGE. Experiments with pharmacological inhibitors and target-specific siRNAs revealed that HO-1 levels highly correlated with increased AMP-activated protein kinase α (AMPKα) activation, which led to the PGC-1α-ERRα axis-induced increases in mitochondrial functions (detected based on expression of cytochrome c oxidase subunit 2 (MTCO2) and cytochrome c as well as O2 consumption and ATP production). Knockdown of ERRα significantly reduced the p-AMPKα/AMPKα ratio and PGC-1α expression, leading to AMPKα-PGC-1α-ERRα circuit formation. Inactivation of HO by injecting the HO inhibitor Sn(IV) protoporphyrin IX dichloride diminished the expression of p-AMPKα, PGC-1α, ERRα, MTCO2, and cytochrome c in the KRGE-administered peri-injured region of a brain subjected to TBI. These data suggest that KRGE enhanced astrocytic mitochondrial function via a HO-1-mediated AMPKα-PGC-1α-ERRα circuit and consequent oxidative phosphorylation, O2 consumption, and ATP production. This circuit may play an important role in repairing neurovascular function after TBI in the peri-injured region by stimulating astrocytic mitochondrial biogenesis.


Assuntos
Astrócitos/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Heme Oxigenase-1/metabolismo , Mitocôndrias/metabolismo , Panax , Proteínas Quinases Ativadas por AMP/genética , Animais , Astrócitos/metabolismo , Astrócitos/fisiologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Citocromos c/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Receptores de Estrogênio/genética , Receptor ERRalfa Relacionado ao Estrogênio
5.
Mol Med Rep ; 23(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33537826

RESUMO

Altered expression levels of N­methyl­D­aspartate receptor (NMDAR), a ligand­gated ion channel, have a harmful effect on cellular survival. Hyperthermia is a proven risk factor of transient forebrain ischemia (tFI) and can cause extensive and severe brain damage associated with mortality. The objective of the present study was to investigate whether hyperthermic preconditioning affected NMDAR1 immunoreactivity associated with deterioration of neuronal function in the gerbil hippocampal CA1 region following tFI via histological and western blot analyses. Hyperthermic preconditioning was performed for 1 h before tFI, which was developed by ligating common carotid arteries for 5 min. tFI­induced cognitive impairment under hyperthermia was worse compared with that under normothermia. Loss (death) of pyramidal neurons in the CA1 region occurred fast and was more severe under hyperthermia compared with that under normothermia. NMDAR1 immunoreactivity was not observed in the somata of pyramidal neurons of sham gerbils with normothermia. However, its immunoreactivity was strong in the somata and processes at 12 h post­tFI. Thereafter, NMDAR1 immunoreactivity decreased with time after tFI. On the other hand, NMDAR1 immunoreactivity under hyperthermia was significantly increased in the somata and processes at 6 h post­tFI. The change pattern of NMDAR1 immunoreactivity under hyperthermia was different from that under normothermia. Overall, accelerated tFI­induced neuronal death under hyperthermia may be closely associated with altered NMDAR1 expression compared with that under normothermia.


Assuntos
Isquemia Encefálica/metabolismo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipertermia Induzida , Transtornos da Memória/metabolismo , Prosencéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Animais , Isquemia Encefálica/patologia , Morte Celular , Gerbillinae , Hipocampo/patologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Neurônios , Prosencéfalo/patologia
6.
Nutrients ; 12(8)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824513

RESUMO

Pycnogenol® (an extract of the bark of French maritime pine tree) is used for dietary supplement and known to have excellent antioxidative efficacy. However, there are few reports on neuroprotective effect of Pycnogenol® supplementation and its mechanisms against ischemic injury following transient forebrain ischemia (TFI) in gerbils. Now, we examined neuroprotective effect and its mechanisms of Pycnogenol® in the gerbils with 5-min TFI, which evokes a significant death (loss) of pyramidal cells located in the cornu ammonis (CA1) region of gerbil hippocampus from 4-5 days post-TFI. Gerbils were pretreated with 30, 40, and 50 mg/kg of Pycnogenol® once a day for 7 days before TFI surgery. Treatment with 50 mg/kg, not 30 or 40 mg/kg, of Pycnogenol® potently protected learning and memory, as well as CA1 pyramidal cells, from ischemic injury. Treatment with 50 mg/kg Pycnogenol® significantly enhanced immunoreactivity of antioxidant enzymes (superoxide dismutases and catalase) in the pyramidal cells before and after TFI induction. Furthermore, the treatment significantly reduced the generation of superoxide anion, ribonucleic acid oxidation and lipid peroxidation in the pyramidal cells. Moreover, interestingly, its neuroprotective effect was abolished by administration of sodium azide (a potent inhibitor of SODs and catalase activities). Taken together, current results clearly indicate that Pycnogenol® supplementation can prevent neurons from ischemic stroke through its potent antioxidative role.


Assuntos
Antioxidantes , Região CA1 Hipocampal/citologia , Suplementos Nutricionais , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/patologia , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/patologia , Animais , Catalase/metabolismo , Modelos Animais de Doenças , Gerbillinae , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Células Piramidais/enzimologia , Superóxido Dismutase/metabolismo
7.
Mol Med Rep ; 16(1): 133-142, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28534982

RESUMO

Chrysanthemum indicum Linné extract (CIL) is used in herbal medicine in East Asia. In the present study, gerbils were orally pre­treated with CIL, and changes of antioxidant enzymes including superoxide dismutase (SOD) 1 and SOD2, catalase (CAT) and glutathione peroxidase (GPX) in the hippocampal CA1 region following 5 min of transient cerebral ischemia were investigated and the neuroprotective effect of CIL in the ischemic CA1 region was examined. SOD1, SOD2, CAT and GPX immunoreactivities were observed in the pyramidal cells of the CA1 region and their immunoreactivities were gradually decreased following ischemia­reperfusion and barely detectable at 5 days post­ischemia. CIL pre­treatment significantly increased immunoreactivities of SOD1, CAT and GPX, but not SOD2, in the CA1 pyramidal cells of the sham­operated animals. In addition, SOD1, SOD2, CAT and GPX immunoreactivities in the CA1 pyramidal cells were significantly higher compared with the ischemia­operated animals. Furthermore, it was identified that pre­treatment with CIL protected the CA1 pyramidal cells in the CA1 region using neuronal nuclei immunohistochemistry and Fluoro­Jade B histofluorescence staining; the protected CA1 pyramidal cells were 67.5% compared with the sham­operated animals. In conclusion, oral CIL pre­treatment increased endogenous antioxidant enzymes in CA1 pyramidal cells in the gerbil hippocampus and protected the cells from transient cerebral ischemic insult. This finding suggested that CIL is promising for the prevention of ischemia­induced neuronal damage.


Assuntos
Antioxidantes/metabolismo , Região CA1 Hipocampal/metabolismo , Chrysanthemum/química , Ataque Isquêmico Transitório/metabolismo , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Animais , Biomarcadores , Catalase/metabolismo , Modelos Animais de Doenças , Gerbillinae , Glutationa Peroxidase/metabolismo , Imuno-Histoquímica , Ataque Isquêmico Transitório/tratamento farmacológico , Ataque Isquêmico Transitório/patologia , Masculino , Superóxido Dismutase-1/metabolismo
8.
Planta Med ; 83(3-04): 210-216, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27392245

RESUMO

Endothelial arginase constrains the activity of endothelial nitric oxide synthase by reducing nitric oxide bioavailability, which contributes to vascular diseases. During screening, we identified a novel compound from the rhizome of Polygonum multiflorum (Polygonaceae), 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside (THSG), which inhibited arginase activity. THSG exhibited noncompetitive inhibition of arginase II and inhibited both arginases I and II in a dose-dependent manner. THSG-dependent arginase inhibition reciprocally increased nitric oxide production and decreased reactive oxygen species generation in aortic endothelia. These effects were associated with increased dimerization of endothelial nitric oxide synthase without changes in the protein expression levels of arginase I, arginase II, or endothelial nitric oxide synthase. In vascular tension assays, when aortic vessels from wild-type mice are incubated with THSG, responses to the nitric oxide-dependent vasorelaxant acetylcholine were augmented, but responses to an nitric oxide donor, sodium nitroprusside, were not affected. On the other hand, phenylephrine-dependent vasoconstriction was significantly retarded in THSG-treated vessels. In a high-cholesterol diet-fed atherogenic model mice (ApoE-/-), THSG improved endothelial function by enhancement of the nitric oxide-cGMP pathway. Taken together, these results suggest that THSG may exert vasoprotective effects through augmentation of nitric oxide signaling by inhibiting arginase. Therefore, THSG may be useful in the treatment of vascular diseases that are derived from endothelial dysfunction, such as atherosclerosis.


Assuntos
Arginase/antagonistas & inibidores , Endotélio Vascular/efeitos dos fármacos , Glucosídeos/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Estilbenos/farmacologia , Acetilcolina/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Aorta/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Arginase/metabolismo , Relação Dose-Resposta a Droga , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Inibidores Enzimáticos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Fenilefrina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Vasoconstrição/efeitos dos fármacos
9.
J Neurol Sci ; 370: 229-236, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27772765

RESUMO

Duloxetine (DXT), a serotonin/norepinephrine reuptake inhibitor, is widely used for the treatment of major depressive disorders. In the present study, we investigated the neuroprotective effect of pre-treated DXT in the hippocampal CA1 region following transient global cerebral ischemia. Pre-treatment with 40mg/kg DXT protected pyramidal neurons in the CA1 region from ischemia-reperfusion injury. In addition, pre-treatment with DXT reduced ischemia-induced activations of microglia and astrocytes in the ischemic CA1 region. On the other hand, we found that pre-treatment with DXT did not increase 4-hydroxy-2-noneal (a marker for lipid peroxidation) and significantly increased the expression of Cu, Zn-superoxide dismutase, an antioxidant, in the CA1 pyramidal neurons compared with non-treated those after ischemia-reperfusion. These results indicate that pre-treated DXT has neuroprotective effect against transient global cerebral ischemia and suggest that the neuroprotective effect of DXT may be due to the attenuation of ischemia-induced glial activation as well as the decrease of oxidative stress.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Região CA1 Hipocampal/efeitos dos fármacos , Cloridrato de Duloxetina/farmacologia , Fármacos Neuroprotetores/farmacologia , Células Piramidais/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Avaliação Pré-Clínica de Medicamentos , Gerbillinae , Masculino , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Inibidores da Recaptação de Serotonina e Norepinefrina/farmacologia , Superóxido Dismutase-1/metabolismo
10.
Yonsei Med J ; 57(6): 1329-38, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27593859

RESUMO

PURPOSE: Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. MATERIALS AND METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. RESULTS: SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. N(G)-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. CONCLUSION: These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions.


Assuntos
Arginase/antagonistas & inibidores , Arginina/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Animais , Arginase/metabolismo , Arginina/análogos & derivados , Endotélio Vascular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Ácido Peroxinitroso , Espécies Reativas de Oxigênio/metabolismo , Doenças Vasculares
11.
Phytother Res ; 29(12): 1910-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26400610

RESUMO

Diabetic retinopathy is a major diabetic complication predominantly caused by vascular endothelial growth factor (VEGF)-induced vascular permeability in the retina; however, treatments targeting glycemic control have not been successful. Here, we investigated the protective effect of dammarenediol-II, a precursor of triterpenoid saponin biosynthesis, on VEGF-induced vascular leakage using human umbilical vein endothelial cells (HUVECs) and diabetic mice. We overproduced the compound in transgenic tobacco expressing Panax ginseng dammarenediol-II synthase gene and purified using column chromatography. Analysis of the purified compound using a gas chromatography-mass spectrometry system revealed identical retention time and fragmentation pattern to those of authentic standard dammarenediol-II. Dammarenediol-II inhibited VEGF-induced intracellular reactive oxygen species generation, but it had no effect on the levels of intracellular Ca(2+) in HUVECs. We also found that dammarenediol-II inhibited VEGF-induced stress fiber formation and vascular endothelial-cadherin disruption, both of which play critical roles in modulating endothelial permeability. Notably, microvascular leakage in the retina of diabetic mice was successfully inhibited by intravitreal dammarenediol-II injection. Our results suggest that the natural drug dammarenediol-II may have the ability to prevent diabetic microvascular complications, including diabetic retinopathy.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Retinopatia Diabética/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Saponinas/farmacologia , Triterpenos/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Alquil e Aril Transferases/genética , Animais , Cálcio/metabolismo , Diabetes Mellitus Experimental/complicações , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Retina/efeitos dos fármacos , Retina/fisiopatologia , Saponinas/biossíntese , Nicotiana/genética , Nicotiana/metabolismo
12.
J Pharmacol Exp Ther ; 355(1): 57-65, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26265320

RESUMO

Elevated endothelial arginase activity decreases nitric oxide (NO) production by competing with the substrate l-arginine, previously reported, and reciprocally regulating endothelial nitric oxide synthase (eNOS) activity. Thus, arginase inhibitors may help treat vascular diseases associated with endothelial dysfunction. A screening of metabolites from medicinal plants revealed that (2S)-5,2',5'-trihydroxy-7,8-dimethoxy flavanone (TDF) was a noncompetitive inhibitor of arginase. We investigated whether TDF reciprocally regulated endothelial NO production and its possible mechanism. TDF noncompetitively inhibited arginase I and II activity in a dose-dependent manner. TDF incubation decreased arginase activity and increased NO production in human umbilical vein endothelial cells and isolated mouse aortic vessels and reduced reactive oxygen species (ROS) generation in the endothelium of the latter. These TDF-mediated effects were associated with increased eNOS phosphorylation and dimerization but not with changes in protein content. Endothelium-dependent vasorelaxant responses to acetylcholine (Ach) were significantly increased in TDF-incubated aortic rings and attenuated by incubation with soluble guanylyl cyclase inhibitor. Phenylephrine-induced vasoconstrictor responses were markedly attenuated in TDF-treated vessels from wild-type mice. In atherogenic-prone ApoE(-/-) mice, TDF attenuated the high-cholesterol diet (HCD)-induced increase in arginase activity, which was accompanied by restoration of NO production and reduction of ROS generation. TDF incubation induced eNOS dimerization and phosphorylation at Ser1177. In addition, TDF improved Ach-dependent vasorelaxation responses and attenuated U46619-dependent contractile responses but did not change sodium nitroprusside-induced vasorelaxation or N-NAME-induced vasoconstriction. The findings suggest that TDF may help treat cardiovascular diseases by reducing pathophysiology derived from HCD-mediated endothelial dysfunction.


Assuntos
Apolipoproteínas E/deficiência , Arginase/antagonistas & inibidores , Colesterol na Dieta/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/efeitos dos fármacos , Flavanonas/farmacologia , Scutellaria/química , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/fisiologia , Apolipoproteínas E/genética , Relação Dose-Resposta a Droga , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Flavanonas/química , Flavanonas/isolamento & purificação , Flavanonas/uso terapêutico , Deleção de Genes , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hiperlipidemias/induzido quimicamente , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/patologia , Hiperlipidemias/fisiopatologia , Masculino , Metanol/química , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/biossíntese , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
J Ginseng Res ; 37(4): 413-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24233159

RESUMO

Korean Red Ginseng extract (KRGE) is a traditional herbal medicine utilized to prevent endothelium dysfunction in the cardiovascular system; however, its underlying mechanism has not been clearly elucidated. We here examined the pharmacological effect and molecular mechanism of KRGE on apoptosis of human umbilical vein endothelial cells (HUVECs) in a serum-deprived apoptosis model. KRGE protected HUVECs from serum-deprived apoptosis by inhibiting mitochondrial cytochrome c release and caspase-9/-3 activation. This protective effect was significantly higher than that of American ginseng extract. KRGE treatment increased antiapoptotic Bcl-2 and Bcl-XL protein expression and Akt-dependent Bad phosphorylation. Moreover, KRGE prevented serum deprivation-induced subcellular redistribution of these proteins between the mitochondrion and the cytosol, resulting in suppression of mitochondrial cytochrome c release. In addition, KRGE increased nitric oxide (NO) production via Akt-dependent activation of endothelial NO synthase (eNOS), as well as inhibited caspase-9/-3 activities. These increases were reversed by co-treatment of cells with inhibitors of eNOS and phosphoinositide 3-kinase (PI3K) and pre-incubation of cell lysates in dithiothreitol, indicating KRGE induces NO-mediated caspase modification. Indeed, KRGE inhibited caspase-3 activity via S-nitrosylation. These findings suggest that KRGE prevents serum deprivation-induced HUVEC apoptosis via increased Bcl-2 and Bcl-XL protein expression, PI3K/Akt-dependent Bad phosphorylation, and eNOS/NO-mediated S-nitrosylation of caspases. The cytoprotective property of KRGE may be valuable for developing new pharmaceutical means that limit endothelial cell death induced during the pathogenesis of vascular diseases.

14.
Planta Med ; 79(5): 313-21, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23412993

RESUMO

We investigated effects of caffeic acid, syringic acid, and their synthesis on transient cerebral ischemic damage in the gerbil hippocampal CA1 region. In the 10 mg/kg caffeic acid-, syringic acid-, and 20 mg/kg syringic-treated ischemia groups, we did not find any significant neuroprotection in the ischemic hippocampal CA region. In the 20 mg/kg caffeic acid- and 10 mg/kg caffeic acid-syringic acid-treated ischemia groups, moderate neuroprotection was found in the hippocampal CA1 region. In the 20 mg/kg caffeic acid-syringic acid-treated ischemia group, a strong neuroprotective effect was found in the ischemic hippocampal CA1 region: about 89 % of hippocampal CA1 region pyramidal neurons survived. We also observed changes in glial cells (astrocytes and microglia) in the ischemic hippocampal CA1 region in all the groups. Among them, the distribution pattern of the glial cells was only in the 20 mg/kg caffeic acid-syringic acid-treated ischemia group similar to that in the sham group (control). In brief, 20 mg/kg caffeic acid-syringic acid showed a strong neuroprotective effect with an inhibition of glia activation in the hippocampal CA1 region induced by transient cerebral ischemia.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Ácidos Cafeicos/uso terapêutico , Ácido Gálico/análogos & derivados , Ataque Isquêmico Transitório/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Animais , Região CA1 Hipocampal/patologia , Ácidos Cafeicos/síntese química , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ácido Gálico/síntese química , Ácido Gálico/química , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Gerbillinae , Ataque Isquêmico Transitório/patologia , Masculino , Fármacos Neuroprotetores/síntese química
15.
J Ethnopharmacol ; 146(2): 515-24, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23353895

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The fruit of Rubus coreanus has been used as a traditional herbal medicine for alleviation of inflammatory and vascular diseases in Asian countries. AIM OF THE STUDY: The anti-atherogenic effect of unripe Rubus coreanus fruit extract (URFE) and its underlying mechanism were analyzed in mice fed a high-fat diet (HFD) and in cell culture system. MATERIALS AND METHODS: Mouse was freely given HFD alone or supplemented with URFE for 14 weeks, followed by analysis of atherosclerotic lesions and serum lipid levels. For in vitro assay, macrophages were pretreated with URFE, followed by stimulation with lipopolysaccharide (LPS). Expression levels of inflammatory genes (TNF-α, IL-1ß, and iNOS) and phase II genes (heme oxygenase-1, glutamate cysteine lygase, and peroxiredoxine-1) as well as intracellular reactive oxygen species (ROS) level and NF-κB activation pathway were analyzed in cultured macrophages as well as mouse sera and aortic tissues. RESULTS: URFE supplementation reduced HFD-induced atherosclerotic lesion formation which was correlated with decreased levels of lipids, lipid peroxides, and inflammatory mediators (TNF-α, IL-1ß, and nitric oxide) in sera as well as suppression of inflammatory gene in aortic tissues. In addition, pre-treatment of macrophages with URFE also suppressed LPS-induced NF-κB activation, ROS production, and inflammatory and phase II gene expressions. Inhibition of phase II enzyme and protein activities attenuated the suppressive effects URFE on ROS production, NF-κB activation, and inflammatory gene expression. CONCLUSION: These results suggest that URFE attenuates atherosclerosis by improving blood lipid profile and inhibiting NF-κB activation via phase II antioxidant gene expression.


Assuntos
Aterosclerose/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Rosaceae , Animais , Aorta/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Linhagem Celular , Colesterol/sangue , Frutas , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato-Cisteína Ligase/genética , Heme Oxigenase-1/genética , Proteínas de Homeodomínio/genética , Interleucina-1beta/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-23243449

RESUMO

Ginseng berry possesses higher ginsenoside content than its root, which has been traditionally used in herbal medicine for many human diseases, including atherosclerosis. We here examined the antiatherogenic effects of the Korean ginseng berry extract (KGBE) and investigated its underlying mechanism of action in vitro and in vivo. Administration of KGBE decreased atherosclerotic lesions, which was inversely correlated with the expression levels of phase II genes to include heme oxygenase-1 (HO-1) and glutamine-cysteine ligase (GCL). Furthermore, KGBE administration suppressed NF-κB-mediated expression of atherogenic inflammatory genes (TNF-α, IL-1ß, iNOS, COX-2, ICAM-1, and VCAM-1), without altering serum cholesterol levels, in ApoE(-/-) mice fed a high fat-diet. Treatment with KGBE increased phase II gene expression and suppressed lipopolysaccharide-induced reactive oxygen species production, NF-κB activation, and inflammatory gene expression in primary macrophages. Importantly, these cellular events were blocked by selective inhibitors of HO-1 and GCL. In addition, these inhibitors reversed the suppressive effect of KGBE on TNF-α-mediated induction of ICAM-1 and VCAM-1, resulting in decreased interaction between endothelial cells and monocytes. These results suggest that KGBE ameliorates atherosclerosis by inhibiting NF-κB-mediated expression of atherogenic genes via upregulation of phase II enzymes and thus has therapeutic or preventive potential for atherosclerosis.

17.
Int J Neurosci ; 121(9): 490-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21819294

RESUMO

Alpinia katsumadai, one of the family Zingiberaceae, contains chalcone, flavonoids, diarylheptanoids, monoterpenes, sesquiterpenoids, stilbenes, and labdanes. It has been reported that the extract of Alpinia katsumadai seed (EAKS) has antiinflammatory effects, and enhances antioxidant activities. We observed the neuroprotective effects of EAKS against ischemic damage in gerbils received oral administrations of EAKS (50 mg/kg) once a day for 7 days before transient cerebral ischemia. In the EAKS-treated ischemia group, neuronal nuclei (NeuN, a marker for neurons)-immunoreactive pyramidal neurons were abundant (68.3% of the sham group) in the hippocampal CA1 region (CA1) 4 days after ischemia/reperfusion (I/R) compared to those in the vehicle-treated ischemia group (13.18%). We also observed that EAKS treatment significantly decreased the activation of astrocytes and microglia in the CA1 compared with the vehicle-treated ischemia group 4 days postischemia. In addition, protein levels of GFAP and Iba-1 in the EAKS-treated ischemia group were much lower than those in the vehicle-treated ischemia group 4 days after I/P. Our findings indicate that the repeated supplements of EAKS could protect neurons from an ischemic damage, showing that glial activation is markedly decreased in the ischemic area.


Assuntos
Alpinia/química , Região CA1 Hipocampal/patologia , Ataque Isquêmico Transitório/prevenção & controle , Neurônios/efeitos dos fármacos , Fitoterapia/métodos , Preparações de Plantas/administração & dosagem , Administração Oral , Análise de Variância , Animais , Modelos Animais de Doenças , Gerbillinae , Proteína Glial Fibrilar Ácida/metabolismo , Ataque Isquêmico Transitório/patologia , Masculino , Proteínas dos Microfilamentos/metabolismo , Atividade Motora/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Reperfusão
18.
J Cell Biochem ; 112(10): 3061-71, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21678478

RESUMO

Here, we present differential cytotoxic responses to two different doses of photodynamic therapies (PDTs; low-dose PDT [LDP] and high-dose PDT [HDP]) using a chlorin-based photosensitizer, DH-II-24, in human gastric and bladder cancer cells. Fluorescence-activated cell sorting analysis using Annexin V and propidium iodide (PI) showed that LDP induced apoptotic cell death, whereas HDP predominantly caused necrotic cell death. The differential cytotoxic responses to the two PDTs were further confirmed by a DiOC(6) and PI double-staining assay via confocal microscopy. LDP, but not HDP, activated caspase-3, which was inhibited by Z-VAD, Trolox, and BAPTA-AM. LDP and HDP demonstrated opposite effects on intracellular reactive oxygen species (ROS)/Ca(2+) signals; LDP stimulated intracellular ROS production, contributing to a transient increase of intracellular Ca(2+) , whereas HDP induced a massive and prolonged elevation of intracellular Ca(2+) responsible for the transient production of intracellular ROS. In addition, the two PDTs also increased in situ transglutaminase 2 (TG2) activity, with a higher stimulation by HDP, and this increase in activity was prevented by Trolox, BAPTA-AM, and TG2-siRNA. LDP-induced apoptotic cell death was strongly inhibited by Trolox and TG2-siRNA and moderately suppressed by BAPTA-AM. However, HDP-mediated necrotic cell death was partially inhibited by BAPTA-AM but not by TG2-siRNA. Thus, these results demonstrate that LDP and HDP induced apoptotic and necrotic cell death by differential signaling mechanisms involving intracellular Ca(2+) , ROS, and TG2.


Assuntos
Fotoquimioterapia/métodos , Neoplasias Gástricas/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Necrose/induzido quimicamente , Porfirinas/farmacologia , Proteína 2 Glutamina gama-Glutamiltransferase , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transglutaminases/genética , Transglutaminases/metabolismo
19.
Phytother Res ; 24(6): 934-40, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19960515

RESUMO

Puerariae flos has been used for oriental herbal medicine; however, its angiogenic effect has not been elucidated. We found that the extract from Puerariae flos (PFE) increased in vitro angiogenic events, such as endothelial cell proliferation, migration, and tube formation, as well as in vivo neovascularization. These events were followed by the activation of multiple signal modulators, such as extracellular signal-regulated kinase (ERK), Akt, endothelial nitric oxide synthase (eNOS), nitric oxide production, p38, Src, and focal adhesion kinase (FAK), without increasing vascular endothelial growth factor (VEGF) expression. Inhibition of ERK, Akt, and eNOS suppressed PFE-induced angiogenic events, and inhibition of p38 and Src activities blocked PFE-induced endothelial cell migration. PFE did not affect the expression of intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 and transendothelial permeability, which are involved in the adverse effects of the well-known angiogenic inducer VEGF. These results suggest that PFE directly stimulates angiogenesis through the activation of MEK/ERK-, phosphatidylinositol 3-kinase/Akt/eNOS-, and Src/FAK-dependent pathways, without altering VEGF expression, vascular inflammation, and permeability in vitro and in vivo and may be used as a therapeutic agent for ischemic disease and tissue regeneration.


Assuntos
Indutores da Angiogênese/farmacologia , Extratos Vegetais/farmacologia , Pueraria/química , Animais , Permeabilidade da Membrana Celular , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Medicina Tradicional do Leste Asiático , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Cordão Umbilical/citologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Quinases da Família src/metabolismo
20.
Eur J Pharmacol ; 602(2-3): 422-31, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19027002

RESUMO

We investigated the effect of desmethylanhydroicaritin (DMAI), a major compound of the Chinese herbal medicine Epimedium, on inflammatory gene expression and the NF-kappaB signaling pathway. We found that DMAI suppressed the expression of NF-kappaB-responsive genes, such as inducible nitric oxide synthase, cyclooxygenase-2, interleukin-1beta, and tumor necrosis factor-alpha, in lipopolysaccharide (LPS)-stimulated macrophages and endotoxemic mice as well as protected mice against LPS-induced lethality. DMAI inhibited NF-kappaB activation through the inhibition of IkappaB kinase (IKK) activation, IkappaB phosphorylation and degradation, and NF-kappaB nuclear translocation in LPS-stimulated macrophages. This compound inhibited in vitro and in vivo LPS-induced phosphatidylinositol 3-kinase (PI3K) activation, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) oxidation, and Akt phosphorylation, which are upstream modulators of IKK activation. Moreover, treatment with DMAI was not observed to affect the interaction between the Toll-like receptor 4, MyD88, and TRAF6 as well as mitogen-activated protein kinase activation. DMAI also suppressed intracellular H(2)O(2) accumulation, hydroxyl radical production, and glutathione oxidation without affecting superoxide generation and accumulation by NADPH oxidase. Moreover, DMAI inhibited redox-sensitive activation of the PI3K/PTEN/Akt pathway and NF-kappaB activation in macrophages treated with H(2)O(2). These results indicate that DMAI negatively regulates canonical NF-kappaB-regulated inflammatory gene expression by functioning as an inhibitor of the NF-kappaB pathway through the suppression of redox-based PI3K activation and PTEN inactivation and therefore can be considered as a potential drug for inflammatory diseases.


Assuntos
Flavonas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , NF-kappa B/antagonistas & inibidores , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Endotoxemia/induzido quimicamente , Endotoxemia/tratamento farmacológico , Endotoxemia/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Flavonas/uso terapêutico , Peróxido de Hidrogênio/metabolismo , Inflamação/tratamento farmacológico , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Camundongos , NF-kappa B/metabolismo , Oxirredução/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA