Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nutr Res ; 104: 10-19, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35533425

RESUMO

Quamoclit angulata (QA) is a species of the Convolvulaceae family and has a regulatory effect on glucose homeostasis. However, the effects of QA on hyperglycemia-induced hepatic damage has not been elucidated. We hypothesized that QA extract (QAE) would alleviate hepatic damage through regulation of hepatic lipid accumulation in type 2 diabetes mellitus (T2DM). T2DM was induced by streptozotocin-high-fat diet in C57BL6 male mice for 8 weeks. The diabetic mice were supplemented with QAE at low dose (5 mg/kg) or high dose (HQ, 10 mg/kg) by oral gavage every day for 12 weeks. Histopathological changes in hepatic tissue were examined using hematoxylin and eosin staining, and the protein levels of biomarkers related to AMP-activation kinase (AMPK)/sirtuin-1 (SIRT1)-associated lipid metabolism were measured using Western blotting. QAE supplementation ameliorated plasma insulin and glycated hemoglobin in diabetic mice. Furthermore, QAE decreased hepatic lipid accumulation demonstrated by hepatic triglyceride and cholesterol levels. QAE supplementation induced hepatic AMPK, which activates SIRT1 accompanied by reduced lipogenesis in the HQ group. These changes were partially explained by the amelioration of advanced glycation end product, hepatic oxidative stress, inflammation, and fibrosis in diabetic mice. Altogether, QAE would be a potential nutraceutical to prevent hepatic damage by regulation of AMPK/SIRT1-associated lipid metabolism through oxidative stress, inflammation, and fibrosis in T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Fígado , Extratos Vegetais , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Fibrose , Inflamação/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Sirtuína 1/metabolismo , Estreptozocina , Triglicerídeos/metabolismo
2.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182770

RESUMO

Metastasis is the main cause of cancer-related deaths. Anoikis is a type of apoptosis caused by cell detachment, and cancer cells become anoikis resistant such that they survive during circulation and can successfully metastasize. Therefore, sensitization of cancer cells to anoikis could prevent metastasis. Here, by screening for anoikis sensitizer using natural compounds, we found that pygenic acid A (PA), a natural compound from Prunella vulgaris, not only induced apoptosis but also sensitized the metastatic triple-negative breast cancer cell lines, MDA-MB-231 cells (human) and 4T1 cells (mouse), to anoikis. Apoptosis protein array and immunoblotting analysis revealed that PA downregulated the pro-survival proteins, including cIAP1, cIAP2, and survivin, leading to cell death of both attached and suspended cells. Interestingly, PA decreased the levels of proteins associated with anoikis resistance, including p21, cyclin D1, p-STAT3, and HO-1. Ectopic expression of active STAT3 attenuated PA-induced anoikis sensitivity. Although PA activated ER stress and autophagy, as determined by increases in the levels of characteristic markers, such as IRE1α, p-elF2α, LC3B I, and LC3B II, PA treatment resulted in p62 accumulation, which could be due to PA-induced defects in autophagy flux. PA also decreased metastatic characteristics, such as cell invasion, migration, wound closure, and 3D growth. Finally, lung metastasis of luciferase-labeled 4T1 cells decreased following PA treatment in a syngeneic mouse model when compared with the control. These data suggest that PA sensitizes metastatic breast cancer cells to anoikis via multiple pathways, such as inhibition of pro-survival pathways and activation of ER stress and autophagy, leading to the inhibition of metastasis. These findings suggest that sensitization to anoikis by PA could be used as a new therapeutic strategy to control the metastasis of breast cancer.


Assuntos
Anoikis/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Triterpenos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Medicina Tradicional do Leste Asiático , Camundongos , Camundongos Endogâmicos BALB C , Plantas Medicinais , Prunella , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA