Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 98(5)2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35380637

RESUMO

Oil spills in coastal waters can have devastating impacts on local ecosystems, from the microscopic base through to mammals and seabirds. Increasing transport of diluted bitumen has led to concerns about how this novel product might impact coastal ecosystems. A mesocosm study determined that the type of diluent and the season can affect the concentrations of hydrocarbons entering the water column from a surface spill. Those same mesocosms were sampled to determine whether diluent type and season also affected the microbial response to a surface spill. Overall, there were no differences in impacts among the three types of diluted bitumen, but there were consistent responses to all products within each season. Although microbial abundances with diluted bitumen rarely differed from unoiled controls, community structure in these organisms shifted in response to hydrocarbons, with hydrocarbon-degrading bacteria becoming more abundant. The relative abundance of heterotrophic eukaryotes also increased with diluted bitumen, with few photosynthetic organisms responding positively to oil. Overall shifts in the microbial communities were minimal relative to spills of conventional oil products, with low concentrations of hydrocarbons in the water column. Oil spill response should focus on addressing the surface slick to prevent sinking or stranding to minimize ecosystem impacts.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Hidrocarbonetos , Mamíferos , Poluição por Petróleo/análise , Água do Mar/microbiologia , Água , Poluentes Químicos da Água/análise
2.
Mar Pollut Bull ; 175: 113372, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35114546

RESUMO

To help better assist the management of Diluted bitumen (DilBit) spills in marine environment, a model named as DilBit Weathering Model (DBWM) was developed in this study to simulate DilBits weathering in marine environment. The DBWM was developed based on specific algorithms for evaporation, dispersion, biodegradation, as well as density and viscosity changes for DilBit weathering and other widely used algorithms for conventional oil weathering in marine environment. To validate the model, a series of DilBit weathering simulation were conducted and compared with the experimental data. Furthermore, the performance of DBWM was compared with a widely used oil weathering model (Automated Data Inquiry for Oil Spills, ADIOS2). The results demonstrated the feasibility and advantages of the developed DBWM in simulating the weathering of marine DilBit spills. Thus, the proposed DBWM can provide effective decision support to marine DilBit spill management.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Hidrocarbonetos , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Tempo (Meteorologia)
3.
Mar Pollut Bull ; 153: 111003, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32275551

RESUMO

Diluted bitumens are produced by adding lower viscosity diluent to highly viscous bitumen to enable it to flow through pipelines and thus may behave differently than conventional oils when spilled into coastal seawater. Simulated surface spills using three different diluted bitumen products were carried out in May, July and November and water column hydrocarbons were monitored over a 14 day period. Volatile and total petroleum hydrocarbons varied in the water column depending on season and type of diluent. In summer, products diluted with synthetic crude or a mixture of condensate and crude released droplets into the water column. Diluted bitumen did not sink to the bottom of the enclosures with surface slicks showing a range of weathering after 14 d. With most of the diluted bitumen product remaining on the surface for 14 d, a rapid conventional clean up response may be effective in low energy, coastal waters.


Assuntos
Hidrocarbonetos/análise , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Monitoramento Ambiental
4.
Environ Microbiol ; 21(7): 2307-2319, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30927379

RESUMO

Oil biodegradation has been extensively studied in the wake of the deepwater horizon spill, but the application of dispersant to oil spills in marine environments remains controversial. Here, we report metagenomic (MG) and metatranscriptomic (MT) data mining from microcosm experiments investigating the oil degrading potential of Canadian west and east coasts to estimate the gene abundance and activity of oil degrading bacteria in the presence of dispersant. We found that the addition of dispersant to crude oil mainly favours the abundance of Thalassolituus in the summer and Oleispira in the winter, two key natural oil degrading bacteria. We found a high abundance of genes related not only to n-alkane and aromatics degradation but also associated with transporters, two-component systems, bacterial motility, secretion systems and bacterial chemotaxis.


Assuntos
Biodegradação Ambiental , Oceanospirillaceae/genética , Oceanospirillaceae/metabolismo , Poluição por Petróleo/análise , Petróleo/metabolismo , Alcanos/metabolismo , Canadá , Metagenoma/genética , Água do Mar/microbiologia , Poluentes Químicos da Água/metabolismo
5.
ISME J ; 11(12): 2793-2808, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28800137

RESUMO

Application of chemical dispersants to oil spills in the marine environment is a common practice to disperse oil into the water column and stimulate oil biodegradation by increasing its bioavailability to indigenous bacteria capable of naturally metabolizing hydrocarbons. In the context of a spill event, the biodegradation of crude oil and gas condensate off eastern Canada is an essential component of a response strategy. In laboratory experiments, we simulated conditions similar to an oil spill with and without the addition of chemical dispersant under both winter and summer conditions and evaluated the natural attenuation potential for hydrocarbons in near-surface sea water from the vicinity of crude oil and natural gas production facilities off eastern Canada. Chemical analyses were performed to determine hydrocarbon degradation rates, and metagenome binning combined with metatranscriptomics was used to reconstruct abundant bacterial genomes and estimate their oil degradation gene abundance and activity. Our results show important and rapid structural shifts in microbial populations in all three different oil production sites examined following exposure to oil, oil with dispersant and dispersant alone. We found that the addition of dispersant to crude oil enhanced oil degradation rates and favored the abundance and expression of oil-degrading genes from a Thalassolituus sp. (that is, metagenome bin) that harbors multiple alkane hydroxylase (alkB) gene copies. We propose that this member of the Oceanospirillales group would be an important oil degrader when oil spills are treated with dispersant.


Assuntos
Bactérias/metabolismo , Petróleo/metabolismo , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Canadá , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Petróleo/análise , Poluição por Petróleo/análise , Água do Mar/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
6.
FEMS Microbiol Ecol ; 92(10)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27387912

RESUMO

The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, ice-covered seas. Hydrocarbon degradation potential of ice-associated microbes collected from the Northwest Passage was investigated. Microcosm incubations were run for 15 days at -1.7°C with and without oil to determine the effects of hydrocarbon exposure on microbial abundance, diversity and activity, and to estimate component-specific hydrocarbon loss. Diversity was assessed with automated ribosomal intergenic spacer analysis and Ion Torrent 16S rRNA gene sequencing. Bacterial activity was measured by (3)H-leucine uptake rates. After incubation, sub-ice and sea-ice communities degraded 94% and 48% of the initial hydrocarbons, respectively. Hydrocarbon exposure changed the composition of sea-ice and sub-ice communities; in sea-ice microcosms, Bacteroidetes (mainly Polaribacter) dominated whereas in sub-ice microcosms, the contribution of Epsilonproteobacteria increased, and that of Alphaproteobacteria and Bacteroidetes decreased. Sequencing data revealed a decline in diversity and increases in Colwellia and Moritella in oil-treated microcosms. Low concentration of dissolved organic matter (DOM) in sub-ice seawater may explain higher hydrocarbon degradation when compared to sea ice, where DOM was abundant and composed of labile exopolysaccharides.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Camada de Gelo/microbiologia , Poluição por Petróleo , Poluentes Químicos da Água/metabolismo , Alphaproteobacteria/genética , Regiões Árticas , Bacteroidetes/genética , Canadá , Flavobacteriaceae/genética , Nunavut , Petróleo/metabolismo , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
7.
Environ Sci Technol ; 48(3): 1803-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24377909

RESUMO

In situ fluorometers were deployed during the Deepwater Horizon (DWH) Gulf of Mexico oil spill to track the subsea oil plume. Uncertainties regarding instrument specifications and capabilities necessitated performance testing of sensors exposed to simulated, dispersed oil plumes. Dynamic ranges of the Chelsea Technologies Group AQUAtracka, Turner Designs Cyclops, Satlantic SUNA and WET Labs, Inc. ECO, exposed to fresh and artificially weathered crude oil, were determined. Sensors were standardized against known oil volumes and total petroleum hydrocarbons and benzene-toluene-ethylbenzene-xylene measurements-both collected during spills, providing oil estimates during wave tank dilution experiments. All sensors estimated oil concentrations down to 300 ppb oil, refuting previous reports. Sensor performance results assist interpretation of DWH oil spill data and formulating future protocols.


Assuntos
Monitoramento Ambiental/instrumentação , Poluição por Petróleo/análise , Petróleo/análise , Benzeno , Fluorometria/instrumentação , Hidrocarbonetos , México , Dispositivos Ópticos , Tolueno , Movimentos da Água , Tempo (Meteorologia) , Xilenos
8.
Mar Pollut Bull ; 71(1-2): 83-91, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23623652

RESUMO

Test facilities such as lab basins and wave tanks are essential when evaluating the use of chemical dispersants to treat oil spills at sea. However, these test facilities have boundaries (walls) that provide an ideal environment for surface (interfacial) film formation on seawater. Surface films may form from surfactants naturally present in crude oil as well as dispersant drift/overspray when applied to an oil spill. The objective of this study was to examine the impact of surface film formation on oil spreading rates in a small scale lab basin and on dispersant effectiveness conducted in a large scale wave tank. The process of crude oil spreading on the surface of the basin seawater was influenced in the presence of a surface film as shown using a 1st order kinetic model. In addition, interfacial film formation can greatly influence chemically dispersed crude oil in a large scale dynamic wave tank.


Assuntos
Modelos Químicos , Poluição por Petróleo , Petróleo/análise , Tensoativos/química , Poluentes Químicos da Água/química , Laboratórios
9.
Environ Toxicol Chem ; 24(6): 1496-504, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16117127

RESUMO

Newly hatched mummichog (Fundulus heteroclitus) were exposed in a 96-h static renewal assay to water-accommodated fractions of dispersed crude oil (DWAF) or crude oil (WAF) to evaluate if the dispersant-induced changes in aqueous concentrations of polycyclic aromatic hydrocarbons (PAH) affected larval survival, body length, or ethoxyresorufin-O-deethylase (EROD) activity. Weathered Mesa light crude oil (0.05-1 g/L) and filtered seawater with or without the addition of Corexit 9500 were used to prepare DWAF and WAE At 0.2 g/L, the addition of dispersant caused a two- and fivefold increase in the concentrations of total PAH (sigmaPAH) and high-molecular-weight PAH (HMWPAH) with three or more benzene rings. Highest mortality rates (89%) were observed in larvae exposed to DWAF (0.5 g/L; sigmaPAH, 479 ng/ml). A reduction in body length was correlated with increased levels of sigmaPAH (r2 = 0.65, p = 0.02) and not with HMWPAH. The EROD activity increased linearly with HMWPAH (r2 = 0.99, p = 0.001) and not with sigmaPAH. Thus, chemical dispersion increased both the sigmaPAH concentrations and the proportion of HMWPAH in WAF. Dispersed HMWPAH were bioavailable, as indicated by a significantly increased EROD activity in exposed mummichog larvae, and this may represent a significant hazard for larval fish.


Assuntos
Doenças dos Peixes/induzido quimicamente , Fundulidae/metabolismo , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Citocromo P-450 CYP1A1/metabolismo , Doenças dos Peixes/metabolismo , Fundulidae/anatomia & histologia , Larva , Petróleo/análise , Petróleo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Poluentes Químicos da Água/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA