Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 86(10): 1467-1475, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35904311

RESUMO

This study investigated different gut bacteria in an anaerobic environment to identify specific candidates that could transform astragaloside IV (AIV) to cycloastragenol (CA). Two representative gut microbes, lactic acid bacteria (LAB) and bifidobacteria, could metabolize AIV to CA. Multiple screenings showed two metabolic pathways to metabolize AIV in two groups of bacteria. LAB metabolized AIV initiated by removing the C-6 glucose, whereas bifidobacteria indicated the initial removal of C-3 xylose. The final products differed between the two groups as bifidobacteria showed the production of CA, whereas LAB demonstrated preferential production of 20R, 24S-epoxy-6α, -16ß, -25-trihydroxy-9, -19-cycloartan-3-one (CA-2H).


Assuntos
Bifidobacterium , Lactobacillales , Bactérias/metabolismo , Glucose/metabolismo , Humanos , Sapogeninas , Saponinas , Triterpenos , Xilose/metabolismo
2.
Food Chem ; 370: 130987, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34536779

RESUMO

Hyperspectral imagery was applied to estimating non-galloyl (EC, EGC) and galloyl (ECG, EGCG) types of catechins in new shoots of green tea. Partial least squares regression models were developed to consider the effects of commercial fertilizer (CF) and organic fertilizer (OF). The models could explain each type of catechin with a precision of more than 0.79, with a few exceptions. When the CF model was applied to the OF hyperspectral reflectance and the OF model was applied to the CF hyperspectral reflectance for mutual prediction, the prediction accuracy was better with the OF models than CF models. The prediction models using both CF and OF data (hyperspectral reflectances, and concentrations of catechins) had a precision of more than 0.76 except for the non-galloyl-type catechins as a group and EGC alone. These results provide useful data for maintaining and improving the quality of green tea.


Assuntos
Catequina , Chá , Catequina/análise
3.
Nat Commun ; 10(1): 4007, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488836

RESUMO

Gut microbiota mediates the effects of diet, thereby modifying host metabolism and the incidence of metabolic disorders. Increased consumption of omega-6 polyunsaturated fatty acid (PUFA) that is abundant in Western diet contributes to obesity and related diseases. Although gut-microbiota-related metabolic pathways of dietary PUFAs were recently elucidated, the effects on host physiological function remain unclear. Here, we demonstrate that gut microbiota confers host resistance to high-fat diet (HFD)-induced obesity by modulating dietary PUFAs metabolism. Supplementation of 10-hydroxy-cis-12-octadecenoic acid (HYA), an initial linoleic acid-related gut-microbial metabolite, attenuates HFD-induced obesity in mice without eliciting arachidonic acid-mediated adipose inflammation and by improving metabolic condition via free fatty acid receptors. Moreover, Lactobacillus-colonized mice show similar effects with elevated HYA levels. Our findings illustrate the interplay between gut microbiota and host energy metabolism via the metabolites of dietary omega-6-FAs thereby shedding light on the prevention and treatment of metabolic disorders by targeting gut microbial metabolites.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Gorduras Insaturadas na Dieta/uso terapêutico , Ácidos Graxos Insaturados/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/metabolismo , Tecido Adiposo/patologia , Animais , Linhagem Celular , Dieta Ocidental , Suplementos Nutricionais , Metabolismo Energético , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Ômega-6/uso terapêutico , Ácidos Graxos Insaturados/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Inflamação/metabolismo , Lactobacillus/metabolismo , Ácido Linoleico/metabolismo , Doenças Metabólicas/dietoterapia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Ácidos Oleicos/metabolismo
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(11): 1619-1628, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31351225

RESUMO

Microorganisms in animal gut produce unusual fatty acids from the ingested diet. Two types of hydroxy fatty acids (HFAs), 10-hydroxy-cis-12-octadecenoic acid (HYA) and 10-hydroxy-octadecanoic acid (HYB), are linoleic acid (LA) metabolites produced by Lactobacillus plantarum. In this study, we investigated the metabolism of these HFAs in mammalian cells. When Chinese hamster ovary (CHO) cells were cultured with HYA, approximately 50% of the supplemented HYA disappeared from the dish within 24 h. On the other hand, the amount of HYA that disappeared from the dish of peroxisome (PEX)-deficient CHO cells was lower than 20%. Significant amounts of C2- and C4-chain-shortened metabolites of HYA were detected in culture medium of HYA-supplemented CHO cells, but not in medium of PEX-deficient cells. These results suggested that peroxisomal ß-oxidation is involved in the disappearance of HYA. The PEX-dependent disappearance was observed in the experiment with HYB, but not with LA. We also found that HYA treatment up-regulates peroxisomal ß-oxidation activity of human gastric MKN74 cells and intestinal Caco-2 cells. These results indicate a possibility that HFAs produced from gut bacteria affect lipid metabolism of host via modulation of peroxisomal ß-oxidation activity.


Assuntos
Microbioma Gastrointestinal , Lactobacillus plantarum/metabolismo , Ácido Linoleico/metabolismo , Peroxissomos/metabolismo , Acilação , Animais , Células CHO , Células CACO-2 , Cricetulus , Humanos , Oxirredução
5.
Int J Food Sci Nutr ; 68(8): 941-951, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28438083

RESUMO

The present study investigated the antiallergic and anti-inflammatory effects of 10-hydroxy-cis-12-octadecenoic acid (HYA), a novel gut microbial metabolite of linoleic acid, in NC/Nga mice, a model of atopic dermatitis (AD). Feeding HYA decreased the plasma immunoglobulin E level and skin infiltration of mast cells with a concomitant decrease in dermatitis score. HYA feeding decreased TNF-α and increased claudin-1, a tight junction protein, levels in the mouse skin. Cytokine expression levels in the skin and intestinal Peyer's patches cells suggested that HYA improved the Th1/Th2 balance in mice. Immunoglobulin A concentration in the feces of the HYA-fed mice was approximately four times higher than that in the control mice. Finally, denaturing gradient gel electrophoresis of the PCR-amplified 16 S rRNA gene of fecal microbes indicated the modification of microbiota by HYA. Taken together, the alterations in the intestinal microbiota might be, at least in part, associated with the antiallergic effect of HYA.


Assuntos
Dermatite Atópica/dietoterapia , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Ácido Linoleico/farmacologia , Ácidos Oleicos/farmacologia , Ração Animal , Animais , Comportamento Animal/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Dieta/veterinária , Fezes/química , Regulação da Expressão Gênica/fisiologia , Imunoglobulina A/química , Inflamação/tratamento farmacológico , Ácido Linoleico/administração & dosagem , Ácido Linoleico/química , Camundongos , Estrutura Molecular , Ácidos Oleicos/administração & dosagem , Ácidos Oleicos/química , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Biosci Biotechnol Biochem ; 66(10): 2283-6, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12450151

RESUMO

Ricinoleic acid (12-hydroxy-cis-9-octadecaenoic acid) was an effective substrate for conjugated linoleic acid (CLA) production by washed cells of Lactobacillus plantarum AKU 1009a. The CLA produced was a mixture of cis-9,trans-11- and trans-9,trans-11-octadecadienoic acids. Addition of alpha-linolenic acid to the culture medium increased the CLA productivity of the washed cells. In the presence of lipase, castor oil, in which the main fatty acid component is ricinoleic acid, also was a substrate for CLA.


Assuntos
Óleo de Rícino/metabolismo , Lactobacillus/metabolismo , Ácido Linoleico/biossíntese , Ácidos Ricinoleicos/metabolismo , Meios de Cultura , Ácido Láctico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA