Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Endocrinology ; 149(1): 310-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17901225

RESUMO

We previously described a colocalization between arginine vasopressin (AVP) and the chemokine stromal cell-derived factor-1alpha (SDF-1) in the magnocellular neurons of both the hypothalamic supraoptic and paraventricular nucleus as well as the posterior pituitary. SDF-1 physiologically affects the electrophysiological properties of AVP neurons and consequently AVP release. In the present study, we confirm by confocal and electron microscopy that AVP and SDF-1 have a similar cellular distribution inside the neuronal cell and can be found in dense core vesicles in the nerve terminals in the posterior pituitary. Because the Brattleboro rats represent a good model of AVP deficiency, we tested in these animals the fate of SDF-1 and its receptor CXCR4. We identified by immunohistochemistry that both SDF-1 and CXCR4 immunoreactivity were strongly decreased in Brattleboro rats and were strictly correlated with the expression of AVP protein in supraoptic nucleus, paraventricular nucleus, and the posterior pituitary. We observed by real-time PCR an increase in SDF-1 mRNA in both heterozygous and homozygous rats. The effect on the SDF-1/CXCR4 system was not linked to peripheral modifications of kidney water balance because it could not be restored by chronic infusion of deamino-8D-ariginine-vasopressin, an AVP V2-receptor agonist. These original data further suggest that SDF-1 may play an essential role in the regulation of water balance.


Assuntos
Quimiocina CXCL12/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Vasopressinas/fisiologia , Animais , Animais Geneticamente Modificados , Água Corporal/metabolismo , Água Corporal/fisiologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/genética , Homeostase/fisiologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/química , Hipotálamo/metabolismo , Masculino , Neuro-Hipófise/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Brattleboro , Ratos Long-Evans , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Frações Subcelulares/metabolismo , Distribuição Tecidual , Vasopressinas/metabolismo , Vasopressinas/farmacologia
2.
Proc Natl Acad Sci U S A ; 103(21): 8221-6, 2006 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-16702540

RESUMO

Chemokines play a key role in inflammation. They are expressed not only in neuroinflammatory conditions, but also constitutively by different cell types, including neurons in the normal brain, suggesting that they may act as modulators of neuronal functions. Here, we investigated a possible neuroendocrine role of the chemokine stromal cell-derived factor 1 (SDF-1)/CXCL12. We demonstrated the colocalization of SDF-1 and its receptor CXCR4 with arginine vasopressin (AVP) in the magnocellular neurons of the supraoptic nucleus (SON) and the paraventricular hypothalamic nucleus and on AVP projections to the neurohypophysis. Electrophysiological recordings of SON neurons demonstrated that SDF-1 affects the electrical activity of AVP neurons through CXCR4, resulting in changes in AVP release. We observed that SDF-1 can blunt the autoregulation of AVP release in vitro and counteract angiotensin II-induced plasma AVP release in vivo. Furthermore, a short-term physiological increase in AVP release induced by enhanced plasma osmolarity, which was produced by the administration of 1 M NaCl i.p., was similarly blocked by central injection of SDF-1 through CXCR4. A change in water balance by long-term salt loading induced a decrease in both SDF-1 and CXCR4 parallel to that of AVP immunostaining in SON. From these data, we demonstrate that chemokine actions in the brain are not restricted to inflammatory processes. We propose to add to the known autoregulation of AVP on its own neurons, a second autocrine system induced by SDF-1 able to modulate central AVP neuronal activity and release.


Assuntos
Quimiocinas CXC/metabolismo , Receptores CXCR4/metabolismo , Transmissão Sináptica , Vasopressinas/metabolismo , Potenciais de Ação , Animais , Quimiocina CXCL12 , Eletrofisiologia , Hipotálamo/metabolismo , Inflamação , Masculino , Neurônios/metabolismo , Técnicas de Patch-Clamp , Hipófise/metabolismo , Ratos , Ratos Wistar
3.
J Neurochem ; 82(4): 783-93, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12358783

RESUMO

Neurotensin (NT) and neuromedin N (NN) are generated by endoproteolytic cleavage of a common precursor molecule, pro-NT/NN. To gain insight into the role of prohormone convertases PC1, PC2, and PC7 in this process, we investigated the maturation of pro-NT/NN in the brain of PC7 (PC7-/-), PC2 (PC2-/-), and/or PC1 (PC1+/- and PC2-/-; PC1+/-) knock down mice. Inactivation of the PC7 gene was without effect, suggesting that this convertase is not involved in the processing of pro-NT/NN. By contrast, there was a 15% decrease in NT and a 50% decrease in NN levels, as measured by radioimmunoassay, in whole brain extracts from PC2 null as compared with wild type mice. Using immunohistochemistry, we found that this decrease in pro-NT/NN maturation products was uneven and that it was most pronounced in the medial preoptic area, lateral hypothalamus, and paraventricular hypothalamic nuclei. These results suggest that PC2 plays a critical role in the processing of pro-NT/NN in mouse brain and that its deficiency may be compensated to a regionally variable extent by other convertases. Previous data have suggested that PC1 might be subserving this role. However, there was no change in the maturation of pro-NT/NN in the brain of mice in which the PC1 gene had been partially inactivated, implying that complete PC1 knock down may be required for loss of function.


Assuntos
Neurotensina/metabolismo , Pró-Proteína Convertase 1 , Precursores de Proteínas/metabolismo , Subtilisinas/deficiência , Animais , Ácido Aspártico Endopeptidases/genética , Encéfalo/citologia , Encéfalo/metabolismo , Química Encefálica , Heterozigoto , Homozigoto , Hipotálamo/citologia , Hipotálamo/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Pró-Proteína Convertase 2 , Pró-Proteína Convertases , Processamento de Proteína Pós-Traducional , Radioimunoensaio , Subtilisinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA