Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nutr Biochem ; 60: 24-34, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30041049

RESUMO

Docosahexaenoic acid (DHA, 22:6n-3) must be consumed in the diet or synthesized from n-3 polyunsaturated fatty acid (PUFA) precursors. However, the effect of dietary DHA on the metabolic pathway is not fully understood. Presently, 21-day-old Long Evans rats were weaned onto one of four dietary protocols: 1) 8 weeks of 2% ALA (ALA), 2) 6 weeks ALA followed by 2 weeks of 2% ALA + 2% DHA (DHA), 3) 4 weeks ALA followed by 4 weeks DHA and 4) 8 weeks of DHA. After the feeding period, 2H5-ALA and 13C20-eicosapentaenoic acid (EPA, 20:5n-3) were co-infused and blood was collected over 3 h for determination of whole-body synthesis-secretion kinetics. The synthesis-secretion coefficient (ml/min, means ± SEM) for EPA (0.238±0.104 vs. 0.021±0.001) and DPAn-3 (0.194±0.060 vs. 0.020±0.008) synthesis from plasma unesterified ALA, and DPAn-3 from plasma unesterified EPA (2.04±0.89 vs. 0.163±0.025) were higher (P<.05) after 2 weeks compared to 8 weeks of DHA feeding. The daily synthesis-secretion rate (nmol/d) of DHA from EPA was highest after 4 weeks of DHA feeding (843±409) compared to no DHA (70±22). Liver gene expression of ELOVL2 and FADS2 were lower (P<.05) after 4 vs. 8 weeks of DHA. Higher synthesis-secretion kinetics after 2 and 4 weeks of DHA feeding suggests an increased throughput of the PUFA metabolic pathway. Furthermore, these findings may lead to novel dietary strategies to maximize DHA levels while minimizing dietary requirements.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Graxos Ômega-3/sangue , Alanina/administração & dosagem , Alanina/sangue , Animais , Isótopos de Carbono , Deutério , Suplementos Nutricionais , Ácido Eicosapentaenoico/administração & dosagem , Ácido Eicosapentaenoico/sangue , Ácidos Graxos Ômega-3/biossíntese , Cinética , Fígado/enzimologia , Masculino , RNA Mensageiro/análise , Ratos , Ratos Long-Evans , Fatores de Tempo
2.
J Nutr Biochem ; 46: 143-150, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28628798

RESUMO

Maternal docosahexaenoic acid (DHA, 22:6n-3) supplies the developing fetus during pregnancy; however, the mechanisms are unclear. We utilized pregnant rats to determine rates of DHA accretion, tissue unesterified DHA uptake and whole-body DHA synthesis-secretion. Female rats maintained on a DHA-free, 2% α-linolenic acid diet were either:1) sacrificed at 56 days for baseline measures, 2) mated and sacrificed at 14-18 days of pregnancy or 3) or sacrificed at 14-18 days as age-matched virgin controls. Maternal brain, adipose, liver and whole body fatty acid concentrations was determined for balance analysis, and kinetic modeling was used to determine brain and liver plasma unesterified DHA uptake and whole-body DHA synthesis-secretion rates. Total liver DHA was significantly higher in pregnant (95±5 µmol) versus non-pregnant (49±5) rats with no differences in whole-body DHA synthesis-secretion rates. However, liver uptake of plasma unesterified DHA was 3.8-fold higher in pregnant animals compared to non-pregnant controls, and periuterine adipose DHA was lower in pregnant (0.89±0.09 µmol/g) versus non-pregnant (1.26±0.06) rats. In conclusion, higher liver DHA accretion during pregnancy appears to be driven by higher unesterified DHA uptake, potentially via DHA mobilization from periuterine adipose for delivery to the fetus during the brain growth spurt.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacocinética , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Pré-Natal , Tecido Adiposo/metabolismo , Animais , Animais Recém-Nascidos , Peso Corporal , Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/sangue , Ingestão de Alimentos , Ácidos Graxos/sangue , Feminino , Gravidez , Ratos Long-Evans , Distribuição Tecidual , Ácido alfa-Linolênico/metabolismo , Ácido alfa-Linolênico/farmacocinética
3.
J Nutr Biochem ; 33: 91-102, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27135386

RESUMO

Tracer studies suggest that phospholipid DHA (PL-DHA) more effectively targets the brain than triglyceride DHA (TAG-DHA), although the mechanism and whether this translates into higher brain DHA concentrations are not clear. Rats were gavaged with [U-(3)H]PL-DHA and [U-(3)H]TAG-DHA and blood sampled over 6h prior to collection of brain regions and other tissues. In another experiment, rats were supplemented for 4weeks with TAG-DHA (fish oil), PL-DHA (roe PL) or a mixture of both for comparison to a low-omega-3 diet. Brain regions and other tissues were collected, and blood was sampled weekly. DHA accretion rates were estimated using the balance method. [U-(3)H]PL-DHA rats had higher radioactivity in cerebellum, hippocampus and remainder of brain, with no differences in other tissues despite higher serum lipid radioactivity in [U-(3)H]TAG-DHA rats. TAG-DHA, PL-DHA or a mixture were equally effective at increasing brain DHA. There were no differences between DHA-supplemented groups in brain region, whole-body, or tissue DHA accretion rates except heart and serum TAG where the PL-DHA/TAG-DHA blend was higher than TAG-DHA. Apparent DHA ß-oxidation was not different between DHA-supplemented groups. This indicates that more labeled DHA enters the brain when consumed as PL; however, this may not translate into higher brain DHA concentrations.


Assuntos
Encéfalo/metabolismo , Deficiências Nutricionais/dietoterapia , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácidos Graxos Essenciais/deficiência , Neurônios/metabolismo , Fosfolipídeos/uso terapêutico , Animais , Tronco Encefálico/metabolismo , Deficiências Nutricionais/sangue , Deficiências Nutricionais/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/deficiência , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/sangue , Ácidos Graxos Ômega-6/metabolismo , Masculino , Especificidade de Órgãos , Fosfatidilcolinas/sangue , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/uso terapêutico , Fosfolipídeos/sangue , Fosfolipídeos/metabolismo , Distribuição Aleatória , Ratos Long-Evans , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Triglicerídeos/uso terapêutico , Trítio
4.
Lipids ; 49(8): 745-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24913495

RESUMO

Docosahexaenoic acid (DHA) is considered to be important for cardiac and brain function, and 17ß-estradiol (E2) appears to increase the conversion of α-linolenic acid (ALA) into DHA. However, the effect of varying ALA intake on the positive effect of E2 on DHA synthesis is not known. Therefore, the objective of this study was to investigate the effects of E2 supplementation on tissue and serum fatty acids in mice fed a low-ALA corn oil-based diet (CO, providing 0.6 % fatty acids as ALA) or a high ALA flaxseed meal-based diet (FS, providing 11.2 % ALA). Ovariectomized mice were implanted with a slow-release E2 pellet at 3 weeks of age and half the mice had the pellet removed at 7 weeks of age. Mice were then randomized onto either the CO or FS diet. After 4 weeks, the DHA concentration was measured in serum, liver and brain. A significant main effect of E2 was found for liver and serum DHA, corresponding to 25 and 15 % higher DHA in livers of CO and FS rats, respectively, and 19 and 13 % in serum of CO and FS rats, respectively, compared to unsupplemented mice. There was no effect of E2 on brain DHA. E2 results in higher DHA in serum and liver, at both levels of dietary ALA investigated presently, suggesting that higher ALA intake may result in higher DHA in individuals with higher E2 status.


Assuntos
Ácidos Docosa-Hexaenoicos/sangue , Estradiol/administração & dosagem , Fígado/metabolismo , Ácido alfa-Linolênico/administração & dosagem , Administração Oral , Animais , Encéfalo/metabolismo , Óleo de Milho/administração & dosagem , Suplementos Nutricionais , Estrogênios/administração & dosagem , Feminino , Linho/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Sementes/metabolismo
5.
Lipids ; 45(3): 209-24, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20151220

RESUMO

Observational evidence suggests that in populations consuming low levels of n-3 highly unsaturated fatty acids, women have higher blood levels of docosahexaenoic acid (DHA; 22:3n-6) as compared with men. Increased conversion of alpha-linolenic acid (ALA; 18:3n-3) to DHA by females has been confirmed in fatty acid stable isotope studies. This difference in conversion appears to be associated with estrogen and some evidence indicates that the expression of enzymes involved in synthesis of DHA from ALA, including desaturases and elongases, is elevated in females. An estrogen-associated effect may be mediated by peroxisome proliferator activated receptor-alpha (PPARalpha), as activation of this nuclear receptor increases the expression of these enzymes. However, because estrogens are weak ligands for PPARalpha, estrogen-mediated increases in PPARalpha activity likely occur through an indirect mechanism involving membrane-bound estrogen receptors and estrogen-sensitive G-proteins. The protein kinases activated by these receptors phosphorylate and increase the activity of PPARalpha, as well as phospholipase A(2) and cyclooxygenase 2 that increase the intracellular concentration of PPARalpha ligands. This review will outline current knowledge regarding elevated DHA production in females, as well as highlight interactions between estrogen signaling and PPARalpha activity that may mediate this effect.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Animais , Gorduras na Dieta/metabolismo , Estrogênios/metabolismo , Feminino , Humanos , Masculino , PPAR alfa/metabolismo , Caracteres Sexuais , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA