Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Appl Physiol (1985) ; 133(3): 546-560, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35771219

RESUMO

Few noninvasive therapies currently exist to improve functional capacity in people with lower extremity peripheral artery disease (PAD). The goal of the present study was to test the hypothesis that unsupervised, home-based leg heat therapy (HT) using water-circulating trousers perfused with warm water would improve walking performance in patients with PAD. Patients with symptomatic PAD were randomized into either leg HT (n = 18) or a sham treatment (n = 16). Patients were provided with water-circulating trousers and a portable pump and were asked to apply the therapy daily (7 days/wk, 90 min/session) for 8 wk. The primary study outcome was the change from baseline in 6-min walk distance at 8-wk follow-up. Secondary outcomes included the claudication onset-time, peak walking time, peak pulmonary oxygen consumption and peak blood pressure during a graded treadmill test, resting blood pressure, the ankle-brachial index, postocclusive reactive hyperemia in the calf, cutaneous microvascular reactivity, and perceived quality of life. Of the 34 participants randomized, 29 completed the 8-wk follow-up. The change in 6-min walk distance at the 8-wk follow-up was significantly higher (P = 0.029) in the group exposed to HT than in the sham-treated group (Sham: median: -0.9; 25%, 75% percentiles: -5.8, 14.3; HT: median: 21.3; 25%, 75% percentiles: 10.1, 42.4, P = 0.029). There were no significant differences in secondary outcomes between the HT and sham group at 8-wk follow-up. The results of this pilot study indicate that unsupervised, home-based leg HT is safe, well-tolerated, and elicits a clinically meaningful improvement in walking tolerance in patients with symptomatic PAD.NEW & NOTEWORTHY This is the first sham-controlled trial to examine the effects of home-based leg heat therapy (HT) on walking performance in patients with peripheral artery disease (PAD). We demonstrate that unsupervised HT using water-circulating trousers is safe, well-tolerated, and elicits meaningful changes in walking ability in patients with symptomatic PAD. This home-based treatment option is practical, painless, and may be a feasible adjunctive therapy to counteract the decline in lower extremity physical function in patients with PAD.


Assuntos
Doença Arterial Periférica , Qualidade de Vida , Temperatura Alta , Humanos , Claudicação Intermitente/terapia , Perna (Membro) , Extremidade Inferior , Doença Arterial Periférica/terapia , Projetos Piloto , Caminhada/fisiologia , Água
2.
Front Physiol ; 12: 697139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489723

RESUMO

BACKGROUND: Our previous study found that acupuncture with low frequency electrical stimulation (Acu/LFES) prevents muscle atrophy by attenuation of protein degradation in mice. The current study examines the impact of Acu/LFES on protein synthesis. METHOD: C57/BL6 mice received Acu/LFES treatment on hindlimb for 30 min once. Acu/LFES points were selected by WHO Standard Acupuncture Nomenclature and electric stimulation applied using an SDZ-II Electronic acupuncture instrument. Muscle protein synthesis was measured by the surface-sensing of translation (SUnSET) assay. Exosomes were isolated using serial centrifugation and concentration and size of the collected exosomes were measured using a NanoSight instrument. The mature microRNA library in serum exosomes was validated using a High Sensitivity DNA chip. RESULTS: Protein synthesis was enhanced in the both hindlimb and forelimb muscles. Blocking exosome secretion with GW4869 decreased the Acu/LFES-induced increases in protein synthesis. MicroRNA-deep sequencing demonstrated that four members of the Let-7 miRNA family were significantly decreased in serum exosomes. Real time qPCR further verified Acu/LFES-mediated decreases of let-7c-5p in serum exosomes and skeletal muscles. In cultured C2C12 myotubes, inhibition of let-7c not only increased protein synthesis, but also enhanced protein abundance of Igf1 and Igf1 receptors. Using a luciferase reporter assay, we demonstrated that let-7 directly inhibits Igf1. CONCLUSION: Acu/LFES on hindlimb decreases let-7-5p leading to upregulation of the Igf1 signaling and increasing protein synthesis in both hindlimb and forelimb skeletal muscles. This provides a new understanding of how the electrical acupuncture treatment can positively influence muscle health.

3.
Cells ; 9(4)2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295252

RESUMO

Aldosterone indirectly regulates water reabsorption in the distal tubule by regulating sodium reabsorption. However, the direct effect of aldosterone on vasopressin-regulated water and urea permeability in the rat inner medullary collecting duct (IMCD) has not been tested. We investigated whether aldosterone regulates osmotic water permeability in isolated perfused rat IMCDs. Adding aldosterone (500 nM) to the bath significantly decreased osmotic water permeability in the presence of vasopressin (50 pM) in both male and female rat IMCDs. Aldosterone significantly decreased aquaporin-2 (AQP2) phosphorylation at S256 but did not change it at S261. Previous studies show that aldosterone can act both genomically and non-genomically. We tested the mechanism by which aldosterone attenuates osmotic water permeability. Blockade of gene transcription with actinomycin D did not reverse aldosterone-attenuated osmotic water permeability. In addition to AQP2, the urea transporter UT-A1 contributes to vasopressin-regulated urine concentrating ability. We tested aldosterone-regulated urea permeability in vasopressin-treated IMCDs. Blockade of gene transcription did not reverse aldosterone-attenuated urea permeability. In conclusion, aldosterone directly regulates water reabsorption through a non-genomic mechanism. Aldosterone-attenuated water reabsorption may be related to decreased trafficking of AQP2 to the plasma membrane. There may be a sex difference apparent in the inhibitory effect of aldosterone on water reabsorption in the inner medullary collecting duct. This study is the first to show a direct effect of aldosterone to inhibit vasopressin-stimulated osmotic water permeability and urea permeability in perfused rat IMCDs.


Assuntos
Aldosterona/uso terapêutico , Transporte Biológico/fisiologia , Medula Renal/efeitos dos fármacos , Túbulos Renais Coletores/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Vasopressinas/efeitos adversos , Aldosterona/farmacologia , Animais , Células Cultivadas , Feminino , Masculino , Ratos
4.
Mol Ther ; 27(3): 571-583, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30711446

RESUMO

Our previous study showed that miR-29 attenuates muscle wasting in chronic kidney disease. Other studies found that miR-29 has anti-fibrosis activity. We hypothesized that intramuscular injection of exosome-encapsulated miR-29 would counteract unilateral ureteral obstruction (UUO)-induced muscle wasting and renal fibrosis. We used an engineered exosome vector, which contains an exosomal membrane protein gene Lamp2b that was fused with the targeting peptide RVG (rabies viral glycoprotein peptide). RVG directs exosomes to organs that express the acetylcholine receptor, such as kidney. The intervention of Exo/miR29 increased muscle cross-sectional area and decreased UUO-induced upregulation of TRIM63/MuRF1 and FBXO32/atrogin-1. Interestingly, renal fibrosis was partially depressed in the UUO mice with intramuscular injection of Exo/miR29. This was confirmed by decreased TGF-ß, alpha-smooth muscle actin, fibronectin, and collagen 1A1 in the kidney of UUO mice. When we used fluorescently labeled Exo/miR29 to trace the Exo/miR route in vivo and found that fluorescence was visible in un-injected muscle and in kidneys. We found that miR-29 directly inhibits YY1 and TGF-ß3, which provided a possible mechanism for inhibition of muscle atrophy and renal fibrosis by Exo/miR29. We conclude that Exo/miR29 ameliorates skeletal muscle atrophy and attenuates kidney fibrosis by downregulating YY1 and TGF-ß pathway proteins.


Assuntos
Exossomos/metabolismo , Fibrose/terapia , Nefropatias/terapia , MicroRNAs/fisiologia , Atrofia Muscular/terapia , Animais , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Exossomos/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose/genética , Nefropatias/genética , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Atrofia Muscular/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta3/genética , Fator de Crescimento Transformador beta3/metabolismo
5.
Am J Physiol Renal Physiol ; 315(6): F1542-F1549, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30132347

RESUMO

Acupuncture with low-frequency electrical stimulation (Acu/LFES) can prevent muscle atrophy by increasing muscle protein anabolism in mouse models of chronic kidney disease. During the treatment of muscle wasting, we found that Acu/LFES on the gastrocnemius muscle of the leg enhances renal blood flow. We also found that Acu/LFES increases exosome abundance and alters exosome-associated microRNA expression in the circulation. When exosome secretion was blocked using GW4869, the Acu/LFES-induced increase in renal blood flow was limited. This provided evidence that the increased renal blood flow is exosome mediated. To identify how exosomes regulate renal blood flow, we performed microRNA deep sequencing in exosomes isolated from treated and untreated mouse serum and found that the 34 microRNAs are altered by Acu/LFES. In particular, miR-181d-5p is increased in the serum exosome of Acu/LFES-treated mice. In silico searching suggested that miR-181d-5p could target angiotensinogen. Using a luciferase reporter assay, we demonstrated that miR-181 directly inhibits angiotensinogen. When Acu/LFES-treated muscle was excised and incubated in culture medium, we found that the amount of exosomes and miR-181d-5p was increased in the medium providing evidence that Acu/LFES can increase miR-181 secretion. We conclude that Acu/LFES on leg hindlimb increases miR-181 in serum exosome leading to increased renal blood flow. This study provides important new insights about the mechanism(s) by which acupuncture may regulation of muscle-organ cross talk through exosome-derived microRNA.


Assuntos
Terapia por Acupuntura , Terapia por Estimulação Elétrica , Exossomos/metabolismo , Rim/irrigação sanguínea , MicroRNAs/sangue , Músculo Esquelético/metabolismo , Atrofia Muscular/terapia , Circulação Renal , Angiotensinogênio/genética , Angiotensinogênio/metabolismo , Animais , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Membro Posterior , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Atrofia Muscular/sangue , Atrofia Muscular/genética , Atrofia Muscular/fisiopatologia , Técnicas de Cultura de Tecidos
6.
Am J Physiol Renal Physiol ; 310(10): F1008-12, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26962099

RESUMO

Nephrogenic diabetes insipidus (NDI) is characterized by production of very large quantities of dilute urine due to an inability of the kidney to respond to vasopressin. Congenital NDI results from mutations in the type 2 vasopressin receptor (V2R) in ∼90% of families. These patients do not have mutations in aquaporin-2 (AQP2) or urea transporter UT-A1 (UT-A1). We tested adenosine monophosphate kinase (AMPK) since it is known to phosphorylate another vasopressin-sensitive transporter, NKCC2 (Na-K-2Cl cotransporter). We found AMPK expressed in rat inner medulla (IM). AMPK directly phosphorylated AQP2 and UT-A1 in vitro. Metformin, an AMPK activator, increased phosphorylation of both AQP2 and UT-A1 in rat inner medullary collecting ducts (IMCDs). Metformin increased the apical plasma membrane accumulation of AQP2, but not UT-A1, in rat IM. Metformin increased both osmotic water permeability and urea permeability in perfused rat terminal IMCDs. These findings suggest that metformin increases osmotic water permeability by increasing AQP2 accumulation in the apical plasma membrane but increases urea permeability by activating UT-A1 already present in the membrane. Lastly, metformin increased urine osmolality in mice lacking a V2R, a mouse model of congenital NDI. We conclude that AMPK activation by metformin mimics many of the mechanisms by which vasopressin increases urine-concentrating ability. These findings suggest that metformin may be a novel therapeutic option for congenital NDI due to V2R mutations.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aquaporina 2/metabolismo , Diabetes Insípido Nefrogênico/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Proteínas de Membrana Transportadoras/metabolismo , Metformina/uso terapêutico , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Animais , Diabetes Insípido Nefrogênico/urina , Avaliação Pré-Clínica de Medicamentos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Ureia/metabolismo , Água/metabolismo , Transportadores de Ureia
7.
J Appl Physiol (1985) ; 120(4): 426-36, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26679610

RESUMO

Muscle wasting occurs in a variety of clinical situations, including denervation. There is no effective pharmacological treatment for muscle wasting. In this study, we used a tibial nerve denervation model to test acupuncture plus low-frequency electric stimulation (Acu-LFES) as a therapeutic strategy for muscle atrophy. Acupuncture needles were connected to an SDZ-II electronic acupuncture device delivering pulses at 20 Hz and 1 mA; the treatment was 15 min daily for 2 wk. Acu-LFES prevented soleus and plantaris muscle weight loss and increased muscle cross-sectional area in denervated mice. The abundances of Pax7, MyoD, myogenin, and embryonic myosin heavy chain were significantly increased by Acu-LFES in both normal and denervated muscle. The number of central nuclei was increased in Acu-LFES-treated muscle fibers. Phosphorylation of Akt was downregulated by denervation leading to a decline in muscle mass; however, Acu-LFES prevented the denervation-induced decline largely by upregulation of the IGF-1 signaling pathway. Acu-LFES reduced the abundance of muscle catabolic proteins forkhead O transcription factor and myostatin, contributing to the attenuated muscle atrophy. Acu-LFES stimulated the expression of macrophage markers (F4/80, IL-1b, and arginase-1) and inflammatory cytokines (IL-6, IFNγ, and TNFα) in normal and denervated muscle. Acu-LFES also stimulated production of the muscle-specific microRNAs miR-1 and miR-206. We conclude that Acu-LFES is effective in counteracting denervation-induced skeletal muscle atrophy and increasing muscle regeneration. Upregulation of IGF-1, downregulation of myostatin, and alteration of microRNAs contribute to the attenuation of muscle atrophy in denervated mice.


Assuntos
Terapia por Acupuntura/métodos , Estimulação Elétrica/métodos , Denervação Muscular/efeitos adversos , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/terapia , Animais , Citocinas/metabolismo , Regulação para Baixo/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miostatina/metabolismo , Agulhas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Nervo Tibial/metabolismo , Regulação para Cima/fisiologia
8.
PLoS One ; 10(7): e0134511, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26230945

RESUMO

Mortality and morbidity are increased in patients with muscle atrophy resulting from catabolic diseases such as diabetes. At present there is no pharmacological treatment that successfully reverses muscle wasting from catabolic conditions. We hypothesized that acupuncture plus low frequency electric stimulation (Acu-LFES) would mimic the impact of exercise and prevent diabetes-induced muscle loss. Streptozotocin (STZ) was used to induce diabetes in mice. The mice were then treated with Acu-LFES for 15 minutes daily for 14 days. Acupuncture points were selected according to the WHO Standard Acupuncture Nomenclature guide. The needles were connected to an SDZ-II electronic acupuncture device delivering pulses at 20Hz and 1mA. Acu-LFES prevented soleus and EDL muscle weight loss and increased hind-limb muscle grip function in diabetic mice. Muscle regeneration capacity was significantly increased by Acu-LFES. The expression of Pax7, MyoD, myogenin and embryo myosin heavy chain (eMyHC) was significantly decreased in diabetic muscle vs. control muscle. The suppressed levels in diabetic muscle were reversed by Acu-LFES. The IGF-1 signaling pathway was also upregulated by Acu-LFES. Phosphorylation of Akt, mTOR and p70S6K were downregulated by diabetes leading to a decline in muscle mass, however, Acu-LFES countered the diabetes-induced decline. In addition, microRNA-1 and -206 were increased by Acu-LFES after 24 days of treatment. We conclude that Acu-LFES is effective in counteracting diabetes-induced skeletal muscle atrophy by increasing IGF-1 and its stimulation of muscle regeneration.


Assuntos
Complicações do Diabetes/terapia , Eletroacupuntura , Músculo Esquelético/fisiopatologia , Doenças Musculares/terapia , Regeneração , Animais , Complicações do Diabetes/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas Musculares/biossíntese , Doenças Musculares/etiologia , Doenças Musculares/fisiopatologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estreptozocina
9.
J Am Soc Nephrol ; 26(3): 626-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25228359

RESUMO

Effective therapeutic strategies to treat CKD-induced muscle atrophy are urgently needed. Low-frequency electrical stimulation (LFES) may be effective in preventing muscle atrophy, because LFES is an acupuncture technique that mimics resistance exercise by inducing muscle contraction. To test this hypothesis, we treated 5/6-nephrectomized mice (CKD mice) and control mice with LFES for 15 days. LFES prevented soleus and extensor digitorum longus muscle weight loss and loss of hind-limb muscle grip in CKD mice. LFES countered the CKD-induced decline in the IGF-1 signaling pathway and led to increases in markers of protein synthesis and myogenesis and improvement in muscle protein metabolism. In control mice, we observed an acute response phase immediately after LFES, during which the expression of inflammatory cytokines (IFN-γ and IL-6) increased. Expression of the M1 macrophage marker IL-1ß also increased acutely, but expression of the M2 marker arginase-1 increased 2 days after initiation of LFES, paralleling the change in IGF-1. In muscle cross-sections of LFES-treated mice, arginase-1 colocalized with IGF-1. Additionally, expression of microRNA-1 and -206, which inhibits IGF-1 translation, decreased in the acute response phase after LFES and increased at a later phase. We conclude that LFES ameliorates CKD-induced skeletal muscle atrophy by upregulation of the IGF-1 signaling pathway, which improves protein metabolism and promotes myogenesis. The upregulation of IGF-1 may be mediated by decreased expression of microRNA-1 and -206 and/or activation of M2 macrophages.


Assuntos
Terapia por Estimulação Elétrica , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Musculares/biossíntese , Atrofia Muscular/terapia , Insuficiência Renal Crônica/complicações , Animais , Macrófagos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Desenvolvimento Muscular , Força Muscular , Músculo Esquelético/metabolismo , Distribuição Aleatória , Transdução de Sinais , Regulação para Cima
10.
Biochim Biophys Acta ; 1833(10): 2143-52, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23684706

RESUMO

The mechanisms by which aldosterone increases Na(+), K(+) ATPase and sodium channel activity in cortical collecting duct and distal nephron have been extensively studied. Recent investigations demonstrate that aldosterone increases Na-H exchanger-3 (NHE-3) activity, bicarbonate transport, and H(+) ATPase in proximal tubules. However, the role of aldosterone in regulation of Na(+), K(+) ATPase in proximal tubules is unknown. We hypothesize that aldosterone increases Na(+), K(+) ATPase activity in proximal tubules through activation of the mineralocorticoid receptor (MR). Immunohistochemistry of kidney sections from human, rat, and mouse kidneys revealed that the MR is expressed in the cytosol of tubules staining positively for Lotus tetragonolobus agglutinin and type IIa sodium-phosphate cotransporter (NpT2a), confirming proximal tubule localization. Adrenalectomy in Sprague-Dawley rats decreased expression of MR, ENaC α, Na(+), K(+) ATPase α1, and NHE-1 in all tubules, while supplementation with aldosterone restored expression of above proteins. In human kidney proximal tubule (HKC11) cells, treatment with aldosterone resulted in translocation of MR to the nucleus and phosphorylation of SGK-1. Treatment with aldosterone also increased Na(+), K(+) ATPase-mediated (86)Rb uptake and expression of Na(+), K(+) ATPase α1 subunits in HKC11 cells. The effects of aldosterone on Na(+), K(+) ATPase-mediated (86)Rb uptake were prevented by spironolactone, a competitive inhibitor of aldosterone for the MR, and partially by Mifepristone, a glucocorticoid receptor (GR) inhibitor. These results suggest that aldosterone regulates Na(+), K(+) ATPase in renal proximal tubule cells through an MR-dependent mechanism.


Assuntos
Trifosfato de Adenosina/metabolismo , Aldosterona/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Receptores de Mineralocorticoides/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Western Blotting , Membrana Celular , Células Cultivadas , Humanos , Hidrólise , Técnicas Imunoenzimáticas , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
11.
J Am Soc Nephrol ; 22(11): 2068-76, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21965375

RESUMO

The mechanisms underlying the muscle wasting that accompanies CKD are not well understood. Animal models suggest that impaired differentiation of muscle progenitor cells may contribute. Expression of the myogenesis-suppressing transcription factor Ying Yang-1 increases in muscle of animals with CKD, but the mechanism underlying this increased expression is unknown. Here, we examined a profile of microRNAs in muscles from mice with CKD and observed downregulation of both microRNA-29a (miR-29a) and miR-29b. Because miR-29 has a complementary sequence to the 3'-untranslated region of Ying Yang-1 mRNA, a decrease in miR-29 could increase Ying Yang-1. We used adenovirus-mediated gene transfer to express miR-29 in C2C12 myoblasts and measured its effect on both Ying Yang-1 and myoblast differentiation. An increase in miR-29 decreased the abundance of Ying Yang-1 and improved the differentiation of myoblasts into myotubes. Similarly, using myoblasts isolated from muscles of mice with CKD, an increase in miR-29 improved differentiation of muscle progenitor cells into myotubes. In conclusion, CKD suppresses miR-29 in muscle, which leads to higher expression of the transcription factor Ying Yang-1, thereby suppressing myogenesis. These data suggest a potential mechanism for the impaired muscle cell differentiation associated with CKD.


Assuntos
MicroRNAs/fisiologia , Desenvolvimento Muscular/fisiologia , Atrofia Muscular , Mioblastos Esqueléticos/fisiologia , Insuficiência Renal Crônica , Regiões 3' não Traduzidas/genética , Adenoviridae/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Atrofia Muscular/etiologia , Atrofia Muscular/genética , Atrofia Muscular/fisiopatologia , Mioblastos Esqueléticos/citologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/fisiopatologia , Fator de Transcrição YY1/genética
12.
Am J Physiol Renal Physiol ; 298(3): F601-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20032119

RESUMO

Patients receiving lithium therapy, an effective treatment for bipolar disorder, often present with acquired nephrogenic diabetes insipidus. The nephrotoxic effects of lithium can be detected 3 wk after the start of treatment and many of these symptoms may disappear in a few weeks after lithium use is stopped. Most patients, however, still have a urine-concentrating defect years after ending treatment. This prompted an investigation of the transporters involved in the urine concentration mechanism, UT-A1, UT-A3, aquaporin-2 (AQP2), and NKCC2, after discontinuing lithium therapy. Sprague-Dawley rats fed a Li2CO3-supplemented diet produced large volumes of dilute urine after 14 days. After lithium treatment was discontinued, urine osmolality returned to normal within 14 days but urine volume and urine urea failed to reach basal levels. Western blot and immunohistochemical analyses revealed that both urea transporters UT-A1 and UT-A3 were reduced at 7 and 14 days of lithium treatment and both transporters recovered to basal levels 14 days after discontinuing lithium administration. Similar analyses demonstrated a decrease in AQP2 expression after 7 and 14 days of lithium therapy. AQP2 expression increased over the 7 and 14 days following the cessation of lithium but failed to recover to normal levels. NKCC2 expression was unaltered during the 14-day lithium regimen but did increase 14 days after the treatment was stopped. In summary, the rapid restoration of UT-A1 and UT-A3 as well as the increased expression of NKCC2 are critical components to the reestablishment of urine concentration after lithium treatment.


Assuntos
Diabetes Insípido Nefrogênico/metabolismo , Capacidade de Concentração Renal , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Antimaníacos , Aquaporina 2/metabolismo , Western Blotting , Diabetes Insípido Nefrogênico/induzido quimicamente , Diabetes Insípido Nefrogênico/fisiopatologia , Diabetes Insípido Nefrogênico/urina , Imuno-Histoquímica , Rim/fisiopatologia , Carbonato de Lítio , Masculino , Concentração Osmolar , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto , Fatores de Tempo , Transportadores de Ureia
13.
Amino Acids ; 37(4): 673-80, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18850309

RESUMO

The influence of alanine on plasma amino acid concentrations and fuel substrates as well as cycling performance was examined. Four solutions [6% alanine (ALA); 6% sucrose (CHO); 6% alanine and 6% sucrose (ALA-CHO); an artificially sweetened placebo (PLC)] were tested using a double-blind, randomised, cross-over design. During each trial, ten cyclists ingested 500 mL of test solution 30 min before exercise and 250 mL after 15, 30, and 45 min of exercise. Participants cycled for 45 min at 75% VO(2)max followed by a 15-min performance trial. Blood was collected before beverage consumption and prior to the performance trial. Alanine concentration was increased (p < 0.05) by approximately tenfold for ALA and ALA-CHO and less than twofold for CHO and PLC. Alanine ingestion increased concentrations of most gluconeogenic amino acids. Overall, alanine supplementation tended to produce favourable metabolic effects, but did not influence performance.


Assuntos
Alanina/administração & dosagem , Aminoácidos/sangue , Desempenho Atlético , Ciclismo/fisiologia , Metabolismo Energético/efeitos dos fármacos , Teste de Esforço/efeitos dos fármacos , Adulto , Alanina/sangue , Estudos Cross-Over , Sacarose Alimentar/farmacologia , Suplementos Nutricionais , Método Duplo-Cego , Ingestão de Alimentos , Feminino , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/fisiologia , Humanos , Masculino
14.
Am J Physiol Renal Physiol ; 291(1): F218-24, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16478974

RESUMO

To identify novel gene targets of vasopressin regulation in the renal medulla, we performed a cDNA microarray study on the inner medullary tissue of mice following a 48-h water restriction protocol. In this study, 4,625 genes of the possible approximately 12,000 genes on the array were included in the analysis, and of these 157 transcripts were increased and 63 transcripts were decreased by 1.5-fold or more. Quantitative, real-time PCR measurements confirmed the increases seen for 12 selected transcripts, and the decreases were confirmed for 7 transcripts. In addition, we measured transcript abundance for many renal collecting duct proteins that were not represented on the array; aquaporin-2 (AQP2), AQP3, Pax-8, and alpha- and beta-Na-K-ATPase subunits were all significantly increased in abundance; the beta- and gamma-subunits of ENaC and the vasopressin type 1A receptor were significantly decreased. To correlate changes in mRNA expression with changes in protein expression, we carried out quantitative immunoblotting. For most of the genes examined, changes in mRNA abundances were not associated with concomitant protein abundance changes; however, AQP2 transcript abundance and protein abundance did correlate. Surprisingly, aldolase B transcript abundance was increased but protein abundance was decreased following 48 h of water restriction. Several transcripts identified by microarray were novel with respect to their expression in mouse renal medullary tissues. The steroid hormone enzyme 3beta-hydroxysteroid dehydrogenase 4 (3betaHSD4) was identified as a novel target of vasopressin regulation, and via dual labeling immunofluorescence we colocalized the expression of this protein to AQP2-expressing collecting ducts of the kidney. These studies have identified several transcripts whose abundances are regulated in mouse inner medulla in response to an increase in endogenous vasopressin levels and could play roles in the regulation of salt and water excretion.


Assuntos
3-Hidroxiesteroide Desidrogenases/análise , 3-Hidroxiesteroide Desidrogenases/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Medula Renal/química , Túbulos Renais Coletores/química , Privação de Água/fisiologia , Animais , Aquaporina 2/análise , Aquaporina 2/genética , Aquaporina 2/fisiologia , Aquaporina 3/análise , Aquaporina 3/genética , Aquaporina 3/fisiologia , DNA Complementar/análise , Canais Epiteliais de Sódio , Frutose-Bifosfato Aldolase/análise , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/fisiologia , Medula Renal/fisiologia , Túbulos Renais Coletores/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Transcrição PAX8 , Fatores de Transcrição Box Pareados/análise , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/fisiologia , RNA Mensageiro/análise , Receptores de Vasopressinas/análise , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Sódio/análise , Canais de Sódio/genética , Canais de Sódio/fisiologia , ATPase Trocadora de Sódio-Potássio/análise , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/fisiologia , Vasopressinas/sangue , Vasopressinas/fisiologia
15.
Am J Physiol Renal Physiol ; 288(1): F188-97, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15251864

RESUMO

Rats with diabetes mellitus have an increase in UT-A1 urea transporter protein abundance and absolute urea excretion, but the relative amount (percentage) of urea in total urinary solute is actually decreased due to the marked glucosuria. Urea-specific signaling pathways have been identified in mIMCD3 cells and renal medulla, suggesting the possibility that changes in the percentage or concentration of urea could be a factor that regulates UT-A1 abundance. In this study, we tested the hypothesis that an increase in a urinary solute other than urea would increase UT-A1 abundance, similar to diabetes mellitus, whereas an increase in urine urea would not. In both inner medullary base and tip, UT-A1 protein abundance increased during NaCl- or glucose-induced osmotic diuresis but not during urea-induced osmotic diuresis. Next, rats undergoing NaCl or glucose diuresis were given supplemental urea to increase the percentage of urine urea to control values. UT-A1 abundance did not increase in these urea-supplemented rats compared with control rats. Additionally, both UT-A2 and UT-B protein abundances in the outer medulla increased during urea-induced osmotic diuresis but not in NaCl or glucose diuresis. We conclude that during osmotic diuresis, UT-A1 abundance increases when the percentage of urea in total urinary solute is low and UT-A2 and UT-B abundances increase when the urea concentration in the medullary interstitium is high. These findings suggest that a reduction in urine or interstitial urea results in an increase in UT-A1 protein abundance in an attempt to restore inner medullary interstitial urea and preserve urine-concentrating ability.


Assuntos
Diurese/fisiologia , Rim/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Ureia/urina , Animais , Diabetes Mellitus Experimental/urina , Diurese/efeitos dos fármacos , Regulação da Expressão Gênica , Glucose/farmacologia , Rim/efeitos dos fármacos , Masculino , Concentração Osmolar , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto , Transportadores de Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA