Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 181: 113880, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843160

RESUMO

The TRopical Oil Pollution Investigations in Coastal Systems (TROPICS) experiment, conducted on the Caribbean coast of Panama, has become one of the most comprehensive field experiments examining the long-term impacts of oil and dispersed oil exposures in nearshore tropical marine environments. From the initial experiment through more than three decades of study and data collection visits, the intertidal and subtidal communities have exhibited significantly different impact and recovery regimes, depending on whether the sites were exposed to crude oil only or crude oil treated with a chemical dispersant. This review provides a synopsis of the original experiment and a cumulative summary of the results and observations, illustrating the environmental and ecosystem trade-offs of chemical dispersant use in mangrove, seagrass, and coral reef environments.


Assuntos
Poluição por Petróleo , Petróleo , Região do Caribe , Recifes de Corais , Ecossistema
2.
PLoS One ; 17(2): e0263420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35196352

RESUMO

Marine microbial communities play an important role in biodegradation of subsurface plumes of oil that form after oil is accidentally released from a seafloor wellhead. The response of these mesopelagic microbial communities to the application of chemical dispersants following oil spills remains a debated topic. While there is evidence that contrasting results in some previous work may be due to differences in dosage between studies, the impacts of these differences on mesopelagic microbial community composition remains unconstrained. To answer this open question, we exposed a mesopelagic microbial community from the Gulf of Mexico to oil alone, three concentrations of oil dispersed with Corexit 9500, and three concentrations of Corexit 9500 alone over long periods of time. We analyzed changes in hydrocarbon chemistry, cell abundance, and microbial community composition at zero, three and six weeks. The lowest concentration of dispersed oil yielded hydrocarbon concentrations lower than oil alone and microbial community composition more similar to control seawater than any other treatments with oil or dispersant. Higher concentrations of dispersed oil resulted in higher concentrations of microbe-oil microaggregates and similar microbial composition to the oil alone treatment. The genus Colwellia was more abundant when exposed to multiple concentrations of dispersed oil, but not when exposed to dispersant alone. Conversely, the most abundant Marinobacter amplicon sequence variant (ASV) was not influenced by dispersant when oil was present and showed an inverse relationship to the summed abundance of Alcanivorax ASVs. As a whole, the data presented here show that the concentration of oil strongly impacts microbial community response, more so than the presence of dispersant, confirming the importance of the concentrations of both oil and dispersant in considering the design and interpretation of results for oil spill simulation experiments.


Assuntos
Lipídeos/farmacologia , Microbiota/efeitos dos fármacos , Microbiota/genética , Poluição por Petróleo/efeitos adversos , Água do Mar/química , Água do Mar/microbiologia , Alcanivoraceae/genética , Alteromonadaceae/genética , Biodegradação Ambiental/efeitos dos fármacos , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Golfo do México , Hidrocarbonetos/metabolismo , Marinobacter/genética , Petróleo/metabolismo , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise
3.
Environ Sci Pollut Res Int ; 27(36): 45270-45281, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32789631

RESUMO

Deep-water column micronekton play a key role in oceanic food webs and represent an important trophic link between deep- and shallow-water ecosystems. Thus, the potential impacts of sub-surface hydrocarbon plumes on these organisms are critical to developing a more complete understanding of ocean-wide effects resulting from deep-sea oil spills. This work was designed to advance the understanding of hydrocarbon toxicity in several ecologically important deep-sea micronekton species using controlled laboratory exposures aimed at determining lethal threshold exposure levels. The current study confirmed the results previously determined for five deep-sea micronekton by measuring lethal threshold levels for phenanthrene between 81.2 and 277.5 µg/L. These results were used to calibrate the target lipid model and to calculate a critical target lipid body burden for each species. In addition, an oil solubility model was used to predict the acute toxicity of MC252 crude oil to vertically migrating crustaceans, Janicella spinacauda and Euphausiidae spp., and to compare the predictions with results of a 48-h constant exposure toxicity test with passive-dosing. Results confirmed that the tested deep-sea micronekton appear more sensitive than many other organisms when exposed to dissolved oil, but baseline stress complicated interpretation of results.


Assuntos
Poluição por Petróleo , Petróleo , Fenantrenos , Poluentes Químicos da Água , Animais , Ecossistema , Oceanos e Mares , Petróleo/análise , Petróleo/toxicidade , Poluição por Petróleo/análise , Fenantrenos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Mar Pollut Bull ; 151: 110804, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32056599

RESUMO

Here, we report results from a 15-day mesocosm experiment examining changes in estimated oil equivalents (EOEs), n-alkanes (n-C10 to n-C35), polycyclic aromatic hydrocarbons (PAHs) and petroleum biomarkers. Water accommodated fractions (WAF) of oil and diluted chemically enhanced WAF (DCEWAF) were prepared and concentrations of oil residues determined on day 0, 3 and 15, respectively. Significant removals of n-alkane and PAHs were observed starting from day 3. The n-C17/pristane and n-C18/phytane ratios suggested that the n-alkane removal was due to biodegradation in the mesocosms. The ratios of C2-dibenzothiophenes/C2-phenanthrenes (D2/P2) and C3-dibenzothiophenes/C3-phenanthrenes (D3/P3) were found to be stable through the experiment. DCEWAF treatment had longer half-lives for most n-alkanes but shorter half-lives for most PAHs than the WAF treatment. Most petroleum biomarkers were stable throughout the experiment. However, depletion of TAS (tricyclic aromatic steroids) was observed on day 15 of DCEWAF treatment.


Assuntos
Ecossistema , Poluição por Petróleo , Petróleo , Tensoativos , Poluentes Químicos da Água , Hidrocarbonetos , Hidrocarbonetos Policíclicos Aromáticos
5.
Mar Pollut Bull ; 150: 110713, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31757392

RESUMO

The water-soluble compounds of oil (e.g. low molecular weight PAHs) dissolve as a function of their physicochemical properties and environmental conditions, while the non-soluble compounds exist as dispersed droplets. Both the chemical and physical form of oil will affect the biological response. We present data from a mesocosm study comparing the microbial response to the water-soluble fraction (WSF), versus a water-accommodated fraction of oil (WAF), which contains both dispersed and dissolved oil components. WAF and WSF contained similar concentrations of low molecular weight PAHs, but concentrations of 4- and 5-ring PAHs were higher in WAF compared to WSF. Microbial communities were significantly different between WSF and WAF treatments, primary productivity was reduced more in WSF than in WAF, and concentrations of transparent exopolymeric particles were highest in WSF and lowest in the controls. These differences highlight the importance of dosing strategy for mesocosm and toxicity tests.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Testes de Toxicidade , Água
6.
Sci Total Environ ; 693: 133626, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31377363

RESUMO

Large amounts of oil containing mucous-like marine snow formed in surface waters adjacent to the Deepwater Horizon spill that was implicated in oil delivery to the seafloor. However, whether chemical dispersants that were used increased or decreased the oil incorporation and sedimentation efficiency, and how exopolymeric substances (EPS) are involved in this process remains unresolved. To investigate the microbial responses to oil and dispersants in different oceanic settings, indicated by EPS production, petro- and non-petro carbon sedimentation, four mesocosm (M) experiments were conducted: 1) nearshore seawater with a natural microbial consortia (M2); 2) offshore seawater with f/20 nutrients (M3); 3) coastal seawater with f/20 nutrients (M4); 4) nearshore seawater with a natural microbial consortia for a longer duration (M5). Four treatments were conducted in M2, M3 and M4 whereas only three in M5: 1) a water accommodated fraction of oil (WAF), 2) a chemically-enhanced WAF prepared with Corexit (CEWAF, not in M5), 3) a 10-fold diluted CEWAF (DCEWAF); and 4) controls. Overall, oil and dispersants input, nutrient and microbial biomass addition enhanced EPS production. Dispersant addition tended to induce the production of EPS with higher protein/carbohydrate (P/C) ratios, irrespective of oceanic regions. EPS produced in M4 was generally more hydrophobic than that produced in M3. The P/C ratio of EPS in both the aggregate and the colloidal fraction was a key factor that regulated oil contribution to sinking aggregates, based on the close correlation with %petro-carbon in these fractions. In the short term (4-5 days), both the petro and non-petro carbon sedimentation efficiencies showed decreasing trends when oil/dispersants were present. In comparison, in the longer-term (16 days), petro-carbon sedimentation efficiency was less influenced by dispersants, possibly due to biological and physicochemical changes of the components of the oil-EPS-mineral phase system, which cooperatively controlled the sinking velocities of the aggregates.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Sedimentos Geológicos/microbiologia , Petróleo/análise , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos/química , Poluição por Petróleo/análise , Água do Mar/química , Tensoativos/química
7.
Environ Toxicol Chem ; 37(11): 2810-2819, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30178489

RESUMO

The Chemical Response to Oil Spill: Ecological Effects Research Forum's water accommodated fraction procedure was compared with 2 alternative techniques in which crude oil was passively dosed from silicone tubing or O-rings. Fresh Macondo oil (MC252) was dosed at 30 mg/L using each approach to investigate oil dissolution kinetics, which was monitored by fluorometry as estimated oil equivalents (EOEs). Subsequent experiments with each dosing method were then conducted at multiple oil loadings. Following equilibration, test media were analytically characterized for polyaromatic hydrocarbons (PAHs) using gas chromatography (GC)-mass spectrometry and dissolved oil using biomimetic solid-phase microextraction (SPME). The results showed that equilibrium was achieved within 72 h for all methods. Measured PAH concentrations were compared with oil solubility model predictions of dissolved exposures. The concentration and composition of measured and predicted dissolved PAHs varied with oil loading and were consistent between dosing methods. Two-dimensional GC compositional data for this oil were then used to calculate dissolved toxic units for predicting MC252 oil acute toxicity across the expected range of species sensitivities. Predicted toxic units were nonlinear with loading and correlated to both EOE and biomimetic SPME. Passive dosing methods provide a practical strategy to deliver and maintain dissolved oil concentrations while avoiding the complicating role that droplets can introduce in exposure characterization and test interpretation. Environ Toxicol Chem 2018;37:2810-2819. © 2018 SETAC.


Assuntos
Fracionamento Químico/métodos , Exposição Ambiental/análise , Poluição por Petróleo/análise , Petróleo/toxicidade , Água/química , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Hidrocarbonetos Policíclicos Aromáticos/análise , Microextração em Fase Sólida , Solubilidade , Poluentes Químicos da Água/toxicidade
8.
Mar Pollut Bull ; 103(1-2): 286-293, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26774441

RESUMO

Pre-spill background concentrations of TPH and PAH in water samples from the Gulf of Mexico are compared with samples (over 20,000) collected during and after the Deepwater Horizon incident (13,000 stations). Samples were collected by multiple response agencies, trustees and BP and reported in the Gulf Science Data. The samples were collected from a few m to over 800 km in all directions from the wellhead. During the incident, samples with the highest concentrations of hydrocarbons were collected proximal to the wellhead or in samples collected from surface slicks and dispersant use. Of the 13,172 water sample TPH concentrations reported, 84% were below 1 µg/L (background). Of the 16,557 water sample PAH concentrations reported, 79% were below 0.056 µg/L (the median field blank, background). The percentage of samples below background increased rapidly after the well was capped. The spatial and temporal distributions of these hydrocarbon data are presented.


Assuntos
Monitoramento Ambiental/métodos , Poluição por Petróleo/análise , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Golfo do México , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA