Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Anim Nutr ; 77(6): 452-467, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012072

RESUMO

Forage-based diets are encouraged in organic dairy cattle production as this can increase the net human food supply, but their voluminous nature can limit dry matter intake (DMI) and performance. This study investigates the effects of a substantial particle size reduction of hay on dairy cows' feed intake, performance, and body characteristics, as well as on apparent total tract digestibility (ATTD). Eighteen lactating Holstein cows were allocated to two balanced feeding groups. The control group received long stem hay with a conventional particle size (CON), the experimental group received chopped hay (RED). Both groups were supplemented with concentrates (3.6 kg/d, DM basis). After 14 adaptation days, data were collected for 20 consecutive days. A covariate period of 21 days preceded the experimental feeding period. Particles retained on the 19-, 8- and 4-mm screens and on the pan of the Penn State Particle Separator accounted for 21%, 20%, 20% and 39% of the RED hay. CON hay consisted of 72% large particles, followed by 8%, 7% and 13% retained on the other screens. Average DMI levels of cows in the CON group reached 20.8 kg/d, with a nonsignificant increase (+1.05 kg/d) in the RED group (p = 0.28). Intakes of both NFC (+0.65 kg/d, p = 0.01) and CP (+0.28 kg/d, p = 0.05) were significantly greater in the RED group, resulting in a slightly increased milk yield (+0.8 kg energy corrected milk/d) (p = 0.45), likely because the ATTD decreased significantly when feeding RED hay. No impact was observed on energy balance (103.7 vs 103.9%, p = 0.95), feed conversion efficiency (kg ECM/kg DMI), or N use efficiency. Overall, the results indicate increases in intake of NFC and CP in the RED group when feeding a hay-based (>83%, DM basis) diet, but also a decrease in nutrient digestibility, likely due to increased passage rate, potentially because of the high fraction of hay particles < 4 mm. In conclusion, hay-based rations with a lower proportion of fine particles should be tested to exploit the potential of particle size reduction in terms of improving hay use efficiency.


Assuntos
Dieta , Lactação , Feminino , Humanos , Bovinos , Animais , Dieta/veterinária , Ração Animal/análise , Tamanho da Partícula , Pradaria , Digestão , Leite , Ingestão de Alimentos , Nutrientes , Rúmen , Silagem
2.
J Dairy Sci ; 101(11): 9800-9814, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30146296

RESUMO

This study used a rumen simulation technique to evaluate the effects of soaking of by-product-rich concentrate (BPC) in 5% lactic acid (LAC; vol/vol) on the rumen microbiota, predicted metagenome, fermentation characteristics, and nutrient degradation without or with supplemented P. The diet was supplemented with 1.6 g of P in the form of monocalcium phosphate per kilogram of dry matter in addition to 284 mg of inorganic P/d per fermentor via artificial saliva. Fermentor fluid was collected for analyses of short-chain fatty acids, fermentation gases, redox potential, and microbiota and feed residues for calculation of nutrient degradation. The microbiota composition was assessed using paired-end Illumina (Illumina Inc., San Diego, CA) MiSeq sequencing of the V3 to V5 region of the 16S rRNA gene. Soaking in LAC reduced the contents of crude protein, neutral and acid detergent fibers, and organic matter fractions as well as ash and P content of the BPC. Both the LAC treatment of BPC and the inorganic P modified the relative bacterial abundances mainly within the predominant orders Bacteroidales and Clostridiales. Supervised DIABLO N-integration networking supported that operational taxonomic units related to BS11, Ruminococcaceae, Christensenellaceae, Eubacterium, and Selenomonas were the most discriminant for the LAC-treated BPC, whereas other operational taxonomic units related to BS11, RFN20, Ruminococcus, and Succiniclasticum were best correlated with the inorganic P supplementation. Integration networking also showed that carbohydrate and pyruvate metabolism, biosynthesis of unsaturated fatty acids, and degradation of several xenobiotics were stimulated by the LAC treatment of BPC. Those data supported the enhanced fermentation activity as indicated by increased total short-chain fatty acid concentration, especially propionate and butyrate, and methane, but decreased ruminal crude protein degradation, with the LAC-treated compared with control-treated BPC. In contrast, despite an increased abundance of imputed functions, such as inositol phosphate metabolism, phosphatidylinositol signaling, and fructose and mannose metabolism, the reduced abundance of the imputed Kyoto Encyclopedia of Genes and Genomes pathway "transcription machinery" as well as the decrease in total short-chain fatty acids and nutrient degradation indicated reduced bacterial metabolic activity with the inorganic P supplementation. In conclusion, soaking of BPC in LAC may favor the proliferation of certain fibrolytic bacterial taxa and stimulate their metabolic activity, whereas the supplemented P to a diet already meeting ruminal P needs may impair ruminal nutrient utilization.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Ácido Láctico/farmacologia , Metagenoma/efeitos dos fármacos , Fósforo na Dieta/análise , Fósforo/análise , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Butiratos/análise , Dieta/veterinária , Ácidos Graxos Voláteis/análise , Feminino , Fermentação , Metano/análise , RNA Ribossômico 16S/genética , Rúmen/efeitos dos fármacos , Rúmen/microbiologia , Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA