Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Epilepsia ; 61(1): 96-106, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31828780

RESUMO

OBJECTIVE: Surgical resection of seizure-producing brain tissue is a gold standard treatment for drug-resistant focal epilepsy. However, several patient-specific factors can preclude resective surgery, including a spatially extensive ("regional") seizure-onset zone (SOZ). For such patients, responsive neurostimulation (RNS) represents a potential treatment, but its efficacy has not been investigated in this population. METHODS: We performed a multicenter retrospective cohort study of patients (N = 30) with drug-resistant focal epilepsy and a regional neocortical SOZ delineated by intracranial monitoring who were treated with the RNS System for at least 6 months. RNS System leads were placed at least 1-cm apart over the SOZ, and most patients were treated with a lead-to-lead stimulation pathway. Five patients underwent partial resection of the SOZ concurrent with RNS System implantation. We assessed change in seizure frequency relative to preimplant baseline and evaluated correlation between clinical outcome and stimulation parameters. RESULTS: Median follow-up duration was 21.5 months (range 6-52). Median reduction in clinical seizure frequency was 75.5% (interquartile range [IQR] 40%-93.9%). There was no significant difference in outcome between patients treated with and without concurrent partial resection. Most patients were treated with low charge densities (1-2.5 µC/cm2 ), but charge density, interlead distance, and duration of treatment were not significantly correlated with outcome. SIGNIFICANCE: RNS is a feasible and effective treatment in patients with drug-resistant regional neocortical seizures. Prospective studies in larger cohorts are necessary to determine optimal lead configuration and stimulation parameters, although our results suggest that lead-to-lead stimulation and low charge density may be effective in some patients.


Assuntos
Epilepsia Resistente a Medicamentos/terapia , Terapia por Estimulação Elétrica/métodos , Epilepsias Parciais/terapia , Adolescente , Adulto , Criança , Estudos de Coortes , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrodos Implantados , Epilepsias Parciais/fisiopatologia , Feminino , Humanos , Masculino , Neocórtex/fisiopatologia , Estudos Retrospectivos , Adulto Jovem
2.
Epilepsia ; 59(6): 1198-1207, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29600809

RESUMO

OBJECTIVE: To compare stereotactic radiosurgery (SRS) versus anterior temporal lobectomy (ATL) for patients with pharmacoresistant unilateral mesial temporal lobe epilepsy (MTLE). METHODS: This randomized, single-blinded, controlled trial recruited adults eligible for open surgery among 14 centers in the USA, UK, and India. Treatment was either SRS at 24 Gy to the 50% isodose targeting mesial structures, or standardized ATL. Outcomes were seizure remission (absence of disabling seizures between 25 and 36 months), verbal memory (VM), and quality of life (QOL) at 36-month follow-up. RESULTS: A total of 58 patients (31 in SRS, 27 in ATL) were treated. Sixteen (52%) SRS and 21 (78%) ATL patients achieved seizure remission (difference between ATL and SRS = 26%, upper 1-sided 95% confidence interval = 46%, P value at the 15% noninferiority margin = .82). Mean VM changes from baseline for 21 English-speaking, dominant-hemisphere patients did not differ between groups; consistent worsening occurred in 36% of SRS and 57% of ATL patients. QOL improved with seizure remission. Adverse events were anticipated cerebral edema and related symptoms for some SRS patients, and cerebritis, subdural hematoma, and others for ATL patients. SIGNIFICANCE: These data suggest that ATL has an advantage over SRS in terms of proportion of seizure remission, and both SRS and ATL appear to have effectiveness and reasonable safety as treatments for MTLE. SRS is an alternative to ATL for patients with contraindications for or with reluctance to undergo open surgery.


Assuntos
Lobectomia Temporal Anterior/métodos , Epilepsia do Lobo Temporal/radioterapia , Epilepsia do Lobo Temporal/cirurgia , Radiocirurgia/métodos , Adulto , Relação Dose-Resposta à Radiação , Epilepsia Resistente a Medicamentos/radioterapia , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/psicologia , Feminino , Lateralidade Funcional , Humanos , Estudos Longitudinais , Masculino , Transtornos da Memória/diagnóstico , Transtornos da Memória/etiologia , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico , Qualidade de Vida , Método Simples-Cego , Resultado do Tratamento , Transtornos da Visão/diagnóstico , Transtornos da Visão/etiologia
3.
Mov Disord ; 27(11): 1404-12, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22926754

RESUMO

Deep brain stimulation (DBS) relieves disabling symptoms of neurologic and psychiatric diseases when medical treatments fail, yet its therapeutic mechanism is unknown. We hypothesized that ventral intermediate (VIM) nucleus stimulation for essential tremor activates the cortex at short latencies, and that this potential is related to the suppression of tremor in the contralateral arm. We measured cortical activity with electroencephalography in 5 subjects (seven brain hemispheres) across a range of stimulator settings, and reversal of the anode and cathode electrode contacts minimized the stimulus artifact, allowing visualization of brain activity. Regression quantified the relationship between stimulation parameters and both the peak of the short latency potential and tremor suppression. Stimulation generated a polyphasic event-related potential in the ipsilateral sensorimotor cortex, with peaks at discrete latencies beginning less than 1 ms after stimulus onset (mean latencies 0.9 ± 0.2, 5.6 ± 0.7, and 13.9 ± 1.4 ms, denoted R1, R2, and R3, respectively). R1 showed more fixed timing than the subsequent peaks in the response (P < 0.0001, Levene's test), and R1 amplitude and frequency were both closely associated with tremor suppression (P < 0.0001, respectively). These findings demonstrate that effective VIM thalamic stimulation for essential tremor activates the cerebral cortex at approximately 1 ms after the stimulus pulse. The association between this short latency potential and tremor suppression suggests that DBS may improve tremor by synchronizing the precise timing of discharges in nearby axons and, by extension, the distributed motor network to the stimulation frequency or one of its subharmonics.


Assuntos
Córtex Cerebral/fisiopatologia , Estimulação Encefálica Profunda/métodos , Potenciais Evocados/fisiologia , Tempo de Reação/fisiologia , Tálamo/fisiologia , Tremor/terapia , Idoso , Biofísica , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Tremor/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA