Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 262(Pt 2): 130164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367776

RESUMO

Ultrasound (US) triggered alterations in the viscoelastic behavior of the procaine-loaded ionically gelatinized pectin hydrogel matrix, and drug release was observed using a sono-device rheometer. The gel softened immediately upon activation of the ultrasound operated at 43 kHz and remained in a softened state throughout the irradiation. Upon cessation of ultrasound, the gel promptly reverted to its original hardness. This cycle of softening was consistently observed in ionically crosslinked pectin hydrogels, resulting in the promotion of procaine release, particularly with higher US power and lower calcium concentration. As the amount of loaded procaine increased, the gel weakened due to ion exchange with the calcium crosslinker and procaine. The most substantial release efficiency, reaching 82 % with a concentration of 32 µg/ml, was achieved when the hydrogels contained 0.03 % procaine within the gelatinized hydrogel medicine at a calcium concentration of 0.9 M, representing a six-fold increase compared to that without US. Notably, US exposure affected the 3D porous structure and degradation rate, leading to hydrogel collapse and facilitating medicine release. Additionally, the procaine-loaded pectin hydrogels with 0.9 M calcium exhibited improved fibroblast cell viability, indicating non-toxicity compared to those hydrogels prepared at a higher Ca2+ concentration of 2.4 M.


Assuntos
Cálcio , Hidrogéis , Hidrogéis/química , Cálcio/química , Pectinas/química , Liberação Controlada de Fármacos , Procaína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA