Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Otolaryngol Head Neck Surg ; 164(4): 821-828, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32957852

RESUMO

OBJECTIVE: Tracking recovery after nerve injury may require many intermittent assessments over long periods, preferably with non- or minimally invasive methods. We developed subcutaneous electrical connection ports (ECPs) for repeated connection to nerve cuff or intramuscular electrodes via transdermal needles and evaluated them during studies of laryngeal reinnervation. STUDY DESIGN: Animal experiment. SETTING: Laboratory. METHODS: ECPs were designed and 3-dimensionally printed for connection to bipolar electrodes with biocompatible polymers. Dual compartments filled with conductive silicone capped with nonconductive silicone were used to make the connections between electrode leads and transdermally inserted needles. Ten dogs (19-29 kg) were implanted with 22 ECPs. In 7 dogs, 11 electrodes were placed on recurrent laryngeal nerves proximal to transection and suture repair to track laryngeal reinnervation. In 6 dogs, 8 spinal accessory nerve cuff electrodes were used to stimulate neck muscle contraction. In 2 dogs, 3 electrodes were implanted in the thyroarytenoid muscle. Stimulation thresholds, electromyography, and videolaryngoscopic imaging were obtained in 156 tests over survival periods up to 32 months. Stimulation data provided information about ECP performance. RESULTS: ECPs added negligible resistance to electrodes (mean ± SD, 2.14 ± 0.9 Ω). Despite some electrode leads breaking distally, ECPs were reliable and well tolerated at implant sites and enabled periodic assessment of nerve and muscle function over the time course of laryngeal reinnervation. Histology showed ECP encapsulation as thin layers of connective tissue and minimal acute inflammation. CONCLUSION: Custom ECPs are easily fabricated and cause little tissue reaction over months to years of subcutaneous implantation, facilitating long-term physiologic studies.


Assuntos
Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Nervo Laríngeo Recorrente/cirurgia , Animais , Cães , Desenho de Equipamento , Feminino , Músculos Laríngeos , Paralisia das Pregas Vocais/terapia
2.
Ann Otol Rhinol Laryngol ; 128(3_suppl): 53S-70S, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30843434

RESUMO

OBJECTIVE:: Laryngeal paralysis of central or peripheral origin can potentially be treated using functional electrical stimulation (FES) of laryngeal muscles. Experiments in canines (dogs) were performed using implant prototypes capable of closed-loop FES to refine engineering designs and specifications, test surgical approaches for implantation, and better understand the in vivo effects of laryngeal muscle stimulation on short- and long-term glottic function. STUDY DESIGN:: Prospective, laboratory. METHODS:: We designed and tested a series of microprocessor-based implantable devices that can stimulate glottic opening or closing based on input from physiological control signals (real-time processing of electromyographic [EMG] signals). After acute device testing experiments, 2 dogs were implanted for 8 and 24 months, with periodic testing of closed-loop laryngeal muscle stimulation triggered from EMG signals. In total, 5 dogs were tested for the effects of laryngeal muscle stimulation on vocal fold (VF) posturing in larynges with nerve supplies that were intact (7 VFs), synkinetically reinnervated (2 VFs), or chronically denervated (1 VF). In 3 cases, the stimulation was combined with airflow-driven phonation to study the consequent modulation of phonatory parameters. RESULTS:: Initial device prototypes used inductive coupling for power and communication, while later iterations used battery power and infrared light communication (detailed descriptions are provided in the Part 1 companion paper). Two animals were successfully implanted with the inductively powered units, which operated until removed at 8 months in 1 animal or for more than 16 months in the second animal. Surgically, the encapsulated implants were well tolerated, and procedures for placing, attaching, and connecting the devices were developed. To simulate EMG control signals in anesthetized animals, we created 2 types of nerve/muscle signal sources. In one approach, a neck muscle had a cuff electrode placed on its motor nerve that was connected to transdermal electrical connection ports for periodic testing. In the second approach, the recurrent laryngeal nerve on one side of the larynx was stimulated to generate a VF EMG signal, which was then used to trigger FES of the paralyzed contralateral side (eg, restoring VF movement symmetry). Implant testing identified effective stimulation parameters and closed-loop stimulation artifact rejection techniques for FES of both healthy and paralyzed VFs. Stimulation levels effective for VF adduction did not cause signs of discomfort during awake testing. CONCLUSION:: Our inductive and battery-powered prototypes performed effectively during in vivo testing, and the 2 units that were implanted for long-term evaluation held up well. As a proof of concept, we demonstrated that elicited neck strap muscle or laryngeal EMG potentials could be used as a control signal for closed-loop stimulation of laryngeal adduction and vocal pitch modulation, depending on electrode positioning, and that VFs were stimulable in the presence of synkinetic reinnervation or chronic denervation.


Assuntos
Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Músculos Laríngeos/fisiopatologia , Fonação/fisiologia , Paralisia das Pregas Vocais/terapia , Prega Vocal/fisiopatologia , Animais , Modelos Animais de Doenças , Cães , Eletromiografia/instrumentação , Feminino
3.
Hear Res ; 304: 49-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23811181

RESUMO

Efficient transfer of sound by the middle ear ossicles is essential for hearing. Various pathologies can impede the transmission of sound and thereby cause conductive hearing loss. Differential diagnosis of ossicular disorders can be challenging since the ossicles are normally hidden behind the tympanic membrane (TM). Here we describe the use of a technique termed optical coherence tomography (OCT) vibrography to view the sound-induced motion of the TM and ossicles simultaneously. With this method, we were able to capture three-dimensional motion of the intact TM and ossicles of the chinchilla ear with nanometer-scale sensitivity at sound frequencies from 0.5 to 5 kHz. The vibration patterns of the TM were complex and highly frequency dependent with mean amplitudes of 70-120 nm at 100 dB sound pressure level. The TM motion was only marginally sensitive to stapes fixation and incus-stapes joint interruption; however, when additional information derived from the simultaneous measurement of ossicular motion was added, it was possible to clearly distinguish these different simulated pathologies. The technique may be applicable to clinical diagnosis in Otology and to basic research in audition and acoustics.


Assuntos
Ossículos da Orelha/fisiologia , Membrana Timpânica/fisiologia , Estimulação Acústica , Animais , Chinchila/anatomia & histologia , Chinchila/fisiologia , Otopatias/diagnóstico , Otopatias/fisiopatologia , Ossículos da Orelha/anatomia & histologia , Humanos , Imageamento Tridimensional , Movimento , Tomografia de Coerência Óptica/métodos , Membrana Timpânica/anatomia & histologia , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA